TWIST DAQ status

- Presently installed at test station
 - 1 FB crate + NGF + PPC
 - 22 TDCs --> 2112 ch (could add 1 TDC)
 - 1 PC used for slow control & DAQ
- For April in M13 area
 - 2 FB crate + 2 NGF + 2 PPC
 - 25 TDCs --> 2400 ch (could move TDC from test station to M13 area)
 - PC + Camac for slow controls
- For April in counting room
 - DAQ host computer + DLT 8000
 capacity is 40GB/55 GB and transfer rate 6MB/s / 8 MB/s
 if event size = 2KB ---> 4000 ev/s
 - Software event builder for multi crate tested with dummy loads

Twist Spectrometer Electronics & Cable Requirements

Å

						_			100			,			_	$\overline{}$				_	1
				-	_		-	2	Spare					-	20	j	N	14		Modules	Spectro
				161	2(U,,V,,)	,,,,,	4(1)()	(VV)						ξ	2(U,,V,,)	1	4(1)()	(VV)	1	Type	Spectrometer
7				4	4	6	N	4				Sper		_	œ	12	4	28	-	*	Ş
Readout (PC2(48)	PC1(64)	DC(48)	DC(80)	DC			9	• Anatogu		PC2(48)	PC1(64)	DC(48)	DC(80)	DC(80)	ļ	Į,	Wire Planes
Total PAD FB Readout (excl. TEC and Scintiliator)	Total /		VTX on Spare Modules	48 (x2)	32	48	80	80		5	mometer i	Spare Anatogue Cables on Spectrometer	Spectrometer VTX	48 (x2)	_	48	80	80		Direct	
To and Scir	Total Analogue Cables	70		0	128/4	0	0	0	Spectrometer Anelogue Cables Spectrometer PAD	ectrome	Andlogue	on Speci		0	128/4	0	0	0		Munad	Wires Read/Plane
Total PAD cintiliator)	Cables	Total VTX	Modules	0	0	*32	0	0		rometer	ner VTX	0	0	一年半	0	0		Futura	Plane		
		112	24	0	0	12	4	8					8	0	٥	24	8	56	1	24 (%	
* Inst		224	72	16	0	0	0	0					152	16		0	0	0	daughter		ΧΤΧ
nanonted		8	16	16	12	4	8					ξ,	ē	32	24	8	56	7	0		
\$	_				_	_	_		i			_							-	-	_
#	112			0	0	12	4	0			96	00		0	0	24	8	56	3	34 Ch	П
ith VIX but pres	112 18			0 8	0 0	12 0	4 0	0 0			96 10	8 2		0 8	0 0	24 0	8 0	56 0	Type1	Г	Ane
ith VTx but presently has	Н						-					Н		H	\vdash			\vdash	-	-	Analogue (
ith V1x but presently has no FB A	18			8	0	0	0	0			10	2		8	0	0	0	0	Type1	16 CH (Long)	Analogue Cable
★ Instrumented with VTx but presently has no FB Readown	18 18			8	0 0	0 0	0 0	0 0	ŕ		10 10	2 2		8 8	0 0	0 0	0 0	0 0	Type1 Type2	Г	Analogue Cable
ith V1x but presently has no 68 Academi	18 18 152			8 8 0	0 0 0 0	0 0 12	0 0 4	0 0 0	,	264	10 10 136	2 2 8	707	8 8 8	0 0 32	0 0 24	0 0 8	0 0 56	Type1 Type2 Type1 Type2	16 CH (Long)	Analogue Cable PAD
	18 18 152			8 8 0	0 0 0 0	0 0 12 0	0 0 4	0 0 0		\vdash	10 10 136	2 2 8	767	8 8 8 8	0 0 32 0	0 0 24 0	0 0 8 0	0 0 56 0	Type1 Type2 Type1 Type2	16 CH (Long) 16 Ch	alogue Cable PAD
296	18 18 152 18			8 8 0	0 0 0 0	0 0 12 0	0 0 4	0 0 0	L.A.	\vdash	10 10 136	2 2 8	261	8 8 8 8 12	0 0 32 0 32	0 0 24 0 60	0 0 8 0 20	0 0 56 0 140	Type1 Type2 Type1 Type2	16 Ch (Long) 16 Ch	alogue Cable PAD
296 3840 H 0	18 18 152			8 8 0	0 0 0 0	0 0 12 0	0 0 4	0 0 0	and the second s	264 /27 = // Cratics	10 10 136	2 2 8	707	8 8 8 8 12 192	0 0 32 0 32 512	0 0 24 0 60 576	0 0 8 0 20 320	0 0 56 0 140 2240	Type1 Type2 Type1 Type2 "" Present	16 CH (Long) 16 Ch	alogue Cable

rant F. Sheffer

ij

ote:

ype1 analogue cables are the normal 16-way microcoax.

ype2 analogue cables are 8-way microcoax on a 16-way connector assembly. These are specific to the Tgt PC.

Do me mue 47 25/01/01

TWIST Computing needs

Background

- NSERC is in the process of a 5 year plan for SAP in Canada. TWIST has indicated it needs at least \$200K in computing hardware. A member of the committee is asking for details on this number.
- A group of physicists are proposing a large computing facily for Canadian SAP. It might be located at Triumf. It should serve the needs of experiments like TWIST, BNL 949 and ATLAS Canada.
- A group of Western Canada scientists is putting together a CFI proposal for a large computing facility (\$25 M). Triumf users are part of this proposal and one component considered is a Beowulf cluster (1000 nodes) plus a storage facility (~50TB of stacker space) located at Triumf.
- We will be gathering a significant amount of data in the near future. How much computing power do we need in the coming year?

Questions

How much data are we expecting to collect?

5Kev/s * 2KB/ev * 3600 s/hr * 20h/d * 5d/w * 20w/y = 72 TB/y

• How much MC data produced per year?

Same amount as data collected = 72 TB/y

• What will be our analysis model?

Analyze several times a few runs? Analyze a few times several calibration runs? Check our analysis on a sample of the data?

It might be advantageous to keep a 2nd set of tapes with a sample of the data (1/100, 1/20?) which could reside in this proposed storage facility.

- What CPU power is needed to analyze one event?
- In the short term, should we add more machines to our local cluster to provide CPU power for the 1st year and terminals for the counting room and visitors?
- What percentage of the CPU load can be taken by outside groups at their institutions?

\$200,000 50 machines at 1643 + 50 to me 100 × 1647 April Zooz 40 tapes/109 ev. 2=20 -> 1 tape

越