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Abstract

Multi-wire chamber ionization detectors experience effects from space charges due to
high energy loss of the radiative particles that penetrate them. One of these effects is that
of the dead zone. A thorough study has been done on the dead zone produced by u™ in the
proportional counters closest to the target stop in the TWIST spectrometer, PC5 and PC6.
Emphasis is placed on the method of analysis and the results found in raw data.

The length of the dead zone was found to be Lge.q = 0.2630 4+ 0.0117 cm in PC5, and
Lgjeqqa = 0.4811 £ 0.0050 ¢m in PC6. The lifetime for the dead zone to heal was found to be
7, = 1856 + 82 ns in PC5, and 75, = 2444 + 41 ns in PC6.

Monte Carlo results were not available, due to technical problems with the experiment
simulation code. A brief description of the TWIST experiment and the physics of the dead

zone are also given.



Chapter 1
Introduction

Throughout the course of the summer, under the supervision of Dr. Art Olin, I have been
performing a study on space charge effects created by the M13 muon beamline in a propor-
tional counter (PC6) inside the TWIST spectrometer. Here I will give a brief introduction to

what a space charge is and how it effects measurements made by PC6 in the spectrometer.

1.1 Proportional Counters

A proportional counter is a type of wire chamber, and a wire chamber is a type of radiation
detector. These types of detectors are constructed as shown in figure (1.1), with a plane of
wires suspended between two planes of metalic foil which act as cathodes. When a negative
voltage is applied to the foils a positive charge is induced on the anodes, creating an electric

field governed by equation (1.1):

V(z,y) = —Z:;O In [4 (sin2 ? + sinh? %)] (1.1)

Where:
e V, — Applied voltage
e ¢ — Dielectric constant of gas used
e s — Wire spacing

e (' — Anode-cathode capacitance Also, if d < s < L then:

2me
C = m (1.2)
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e L. — Anode-cathode gap

e d — Wire diameter
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Figure 1.1: Multi-Wire Proportional Chamber

The chamber is filled with a neutral gas, like a Noble gas, at constant pressure to interact
with incident radiation which creates an electron-ion pair. The electron and ion are then
accelerated to the anode and cathode respectively. The electron moves with greater mobility
then the positively charged ion, since it is much lighter. Once it is within a few wire radii
of the wire, it begins to accelerate with enough energy to create another electron-ion pair,
should it collide with a gas molecule. The secondary electron does the same thing, and so
on, producing an avalanche of electron-ions pairs. This avalanche forms a tear drop shape
of positive and negative charges as it moves, with mostly electrons at the head, and positive

ions at the tail.



The negative charge is collected by the anode wires, while the positively charged ions
drift back to the cathode. It is this positive charge drift that induces a current in the anode
wires and forms a sharp negative voltage pulse. This pulse is then analyzed by Time to
Digital Converters (TDC’s) which are used to ‘detect’ the incident radiation.

One might ask why it is not the electrons that induce the pulse. They are, afterall,
moving a lot faster towards the anode wire than the ions are moving back to the cathode
plane. It is because of the sequential charge pairs that are created in the avalanche. Each
pair, on its own, contributes a net charge of zero in a region surrounding it; therefore little
or no charge is induced by the electrons drifting. However, it can be shown that there is a
small effect due to the collection of electrons by the anode wire. A small current due to this
electron collection is produced, which essentially governs the rise time of the signal pulse. It
is the positive ion drift back to the cathode that continues the tail of the pulse. This tail is
much longer in duration then the rise time. It is the part of the signal most measured.

Moreover, proportional counters work in the voltage range of about 200 — 600 V. In
this range the amount of amplified current produced is proportional to the initial number of
electron-ion pairs created. So the signal strength (or length of duration) is proportional to
the energy deposited in the gas by the incident radiation.

Additional information can be found using these detectors. The position at which the
radiation passed through the detector can be approximated by the position of the wire:
x 4+ s/2. Since the same signal can be produced on either side of the wire there is a left-right
ambiguity.

However, only one position coordinate can be found per wire plane, since the wire planes
are only sensitive to the direction perpendicular to which they run. To get the y-coordinate
another plane of wires is needed at a different z-value, this time with wires running perpen-

dicular to the plane next to it.

1.2 Drift Chambers

Similar to PCs, drift chambers (DCs) use the ionization of neutral gas molecules to detect
the position of an event. The difference between DCs from PCs is that their cells are filled
with a slower gas, that is the time for the ions to drift back to the cathode from the anode
wire is much larger than the PCs. The spacing between the cathode and anode wire is also
larger, further lengthening the drift time. The purpose of this is to more accurately calculate

the position of the event inside the wire chamber cell.



But because of the left-right ambiguity, many hits to the same track must be used to

resolve which side (the left or the right) of the wire the hit was most likely to orginate.

1.3 The TWIST Spectrometer

The TWIST Spectrometer consists of a superconducting solenoid magnet, which produces
a close to uniform 2 tesla magnetic field. The M13 beamline is fired down the center of
the solenoid, along the positive z-direction. This is the source of muons needed for the
experiment, whose goal is to measure the four Michel parameters (p, 1, 0, and &) which are
related to the weak interaction occurring in positive muon decay. By finding the four Michel
parameters to a greater precision then ever before measured, the TWIST experiment will be
able to observe any deviations in reality from the standard model. But its result, in the end,
may be limited my systematic uncertainties. The purpose of this study is therefore aimed
at finding the systematic uncertainty due to dead zones in the TWIST spectrometer.

The spectrometer is designed such that incident muons travel through the upstream half
of the spectrometer then decay in a target located at z = 0.0 cm. A muon decays into a
positron, an electron neutrino and a muon anti-neutrino as illustrated in figure (1.2). Once
decayed, the positron creates tracks in the wire chambers which could be in the upstream or

downstream chambers.

Figure 1.2: Feynman Diagram of y* — e* + 7, + 1,

As shown in figure (1.3), inside the solenoid are 56 planes of wire chambers, each oriented
in a particular direction in order to measure the positions of muon and positron tracks. There
are two types of wire chambers in the spectrometer: Proportional Counters (PCs) and Drift
Chambers (DCs). They both serve a different purpose.

The DCs are placed near the center of the upstream and downstream chambers. They

have a slow gas; ie, the ions take longer to drift back to the cathode. This makes the
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Figure 1.3: TWIST Spectrometer

width of the pulses much longer then the PCs, thus giving a more precise measurement of

the drift time due to the limitations of electronics. These time measurements give a more

precise measurement of the positions at which the events occured. The improved positions

are then used for the least squares helix fitting of the positron tracks in both the upstream

and downstream chambers.

Recall that in a uniform magnetic field along the z-axis the equation of motion of a

charged particle is a helix, and the most general form is given by equations (1.3) — (1.5):

xz(z) =

y(z) =

z(z) =

To +

Yo +

o

z

Dy, 1 . (4B,
—2,) — 1 1.
4B, [singosm ( 0. (z — 2,) go) + ] (1.3)
Dz 1 qB,
o —z)—0p| -1 1.4
qB, [COS%COS ( D (2= 2) QD) ] (1.4)

(1.5)

Where z,, Yo, Pz,, Py, and ¢ are determined by the initial conditions:

z(z,) = %o

(20)
y(20) = Yo
2(z) = z
(20)

2o

Pz\Zo = Dz,



py(zg) = pyo

And p,(z) = constant = p,.
The PCs are used for fast timing measurements, and are located at the entrance and exit

of both upstream and downstream chambers. They contain a fast gas; ie, the ions drift back
to the cathode relatively quickly, enabling small time scale measurements. These are needed
for obtaining the start and end times of the muon and positron tracks. If no start or end

times are available, there could not be a position calculation.
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Figure 1.4: TWIST Spectrometer Side View

1.4 Space Charges and Dead Zones

Near the end of a muon track, before it decays, the muon deposits the most amount of
energy in the gas. This relatively large deposit of energy forms many electron-ion pairs, each
electron creating its own avalanche. Most of the ions are then created near the anode wire,
where they must drift back towards the cathode. Such a large number of localized positive
ions is what we call a space charge inside the wire chamber. This space charge has a finite

decay time over which the ions recombine with electrons or drift back to the cathode.
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Figure 1.5: Avalanching Electrons in a Single Wire Chamber Cell

Suppose now that the positron decays upstream, back through the same region containing
this space charge. In this case, any additional electron-ion pairs that are formed by the
positron either recombine with the high density of positive ions that compose the space
charge, or they are redirected away from the anode wire because the electric field has been
destorted by the space charge. Without an electron-ion pair specific to that positron, no
pulse is formed, and thus no position is recorded in the data. This region containing the
space charge is what we call the dead zone, since the cells containing the wires act as if they
are dead.

This study of the dead zone is, therefore, done mostly on PC5 and PC6, which are located

nearest the muon target in the upstream chamber.
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Chapter 2

The Goal

The goal of this dead zone study is to answer the following questions:
(1) How large is the dead zone on average?
(2) How long does it take for the dead zone to “heal”?

(3) What is the probability that a positron will go through the dead zone without firing

the corresponding wire?

(4) What effect does this dead zone have on the analysis of the Michel parameters? Ie;

what is the systematic uncertainty of the dead zone effect?

With the help of Monte Carlo analysis using GEANTS3, these questions can be answered.
We began by first asking what data variables are needed to answer these questions and then
writing a code that essentially fills different histograms, under the right conditions, that
contain useful information.

As illustrated in this report, there are a number of checks we can perform to ensure our
results are on track. One of them is to run the program on a set of Monte Carlo data and
observe whether or not similar results are obtained.

The Monte Carlo simulation of the TWIST experiment is essential to this study. For
example, we have no way of testing how large the dead zone is, or how long is lasts, without
implementing specific numbers in GEANTS. If we can then get the same numbers back out
that we had put in for the healing time 73, and the dead length L4, we know our analysis of

the dead zone for raw data is correct.



Chapter 3

TWIST Software

The TWIST experiment is extremely dependent on its software. Most of its software is

custom built, and requires fast computing power and vast memory banks to store the data

and analysis results. In fact, the computing facilities at TRIUMF are insufficient for the

jobs TWIST requires. So the experiment has applied and acquired high priority on the

WESTGRID computing facility. This organization provides the CPUs for computing and

storing data for many outside universities and organizations along the west coast.

There are two main processes the data must be run through in order to obtain the

information needed for this study:

(1)

MOFIA Analysis

MOFIA is the main analysis code. It takes the initial binary files that were created in
sets during the first two years of data taking. The binary files contain all the raw data

directly from the electronics connected to the T'WIST spectrometer.

For each set of data (containing ~ 2.5 x 10® events) there are about 200-300 runs
that divide up the events. For each run MOFIA creates a .root file that contains
histograms of different quantities, and different variables that are derived from the raw
data.

So for each analyzed set, there are 200-300 files labeled: treerun#.root which need
to be summed in order to get useful information. This is the next step.
ROOT Tree Summing

ROOT is a very powerful object oriented physics analysis program that uses the C++
language as a platform. TWIST uses this software to conveniently store statistical

information in a special root data structure called a tree.
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Root trees are similar to directories, in that a single tree can contain many types of
data structures. There are three main types of structures used by this experiment in

the root trees:

(i) Histograms
(ii) Ntuples
(iii) Leaves
Histograms and Ntuples we know well, but what are leaves? Leaves are basically

variables in array form that can be accessed in the same way as arrays or pointers

passed as arguments in a function.

Leaves can even be histogramed under any numerical condition inside the root viewer

by using its object oriented platform.

Using a code written by members of the TWIST group, the root run files in each
analyzed data set can be summed over all the information in each file and reduce the

analysis further to a single .root file.

11



Chapter 4
Analysis

Here is a brief description of the algorithm and method of analysis.

4.1 The Code

The bulk of the deadzone analysis is done by the set of subroutines I have attached to the
end of Blair Jamieson’s HTree analysis code. The following is a list of the code implemented
in my version of HTree, found in:

\home\bbarrett\Research

(1) HTree.C and HTree.h

These are the implementation and header files of the main HTree analysis code. The
last few lines contain the definitions of the subroutines I have written to perform the

dead zone analysis called:

(i) Deadzone ()

(ii) DZComputHistos ()

)

)

(iii) DZ_ErrorBars()

(iv) TH2D_Divide ()
)

(v) TestTrackToZ()

(2) processhelixtrees

Executable that performs HTree analysis.

12



(3) trackswim.cpp and trackswim.h

This code is just like it sounds, it “trackswims” a particle of charge ¢ from and initial
position (u, v, z) with momentum (py, py,p,) in a uniform or non-uniform B-field to a

requested ENDZ. It then outputs the new coordinates (u, v,ENDZ) and momentum there.

(4) magnet.cpp and magnet.h

This code calculates the B-field data: (Bu, By, B,) at all neccessary (u, v, z) for the uni-
form or non-uniform cases, with the help of the internationally standardized magnetic

field mapping program OPERA.

Once the data or Monte Carlo sets are run by the main analysis software MOFIA, the
information is output into .root files in the form: treerun#.root. My code runs while the
trees are summed, and outputs histograms that contain useful information about the dead

zone.

4.2 The Geometry

The geometry of the spectrometer is crucial to understanding how to tackle this dead zone
problem. As mentioned before, there are two types of wire chambers in the spectrometer:
drift chambers and proportional counters. But where are each of these chambers located
relative to the target stop at z = 0 cm? The following subsections give a very good description
of this. Of couse, our problem only exists in the upstream (US) half of the spectrometer, so

this is all the geometery data we need.

4.2.1 US Drift Chambers

There are a few parameters in the tables that follow which need explaining.

e The global plane numbers are simply plane numbers defined as the sequential order in

which the muon would hit the planes if it went straight through the spectrometer.
e The z-coordinate is the distance, in cm, from the target stop.
e The rotation is the angle relative to horizontal at which the wire chambers are rotated.

e The instrumented wires per plane is the number of wires that are actually hooked up to

counting electronics. We must also know that there are the same number of wires per

13



plane in any DC or PC. These wires that are not instrumented can still cause multiple
scattering of the muon and positron. There are 80 wires per plane in any DC, where

the wire spacing, s = 0.4 cm.

e The plane type depends on the angle of rotation. If the plane type is V', then the wires
run along the U-direction and measure the v-coordinate of the tracks. If the plane
type is U, then the wires run along the V-direction and measure the u-coordinate of
the tracks.

Tables (4.1) and (4.2) were taken from: /home/e614/e614soft/caldb_ascii/dt_geo.00038

4.2.2 US Proportional Counters

The wire spacing, s = 0.2 cm for all PCs. Each one contains 160 wires per plane, but the last
two in the US chamber only have 48 of those wires instrumented. All instrumented wires

are located in the central region of the wire chambers, encompassing the muon beam spot.

4.3 The Algorithm

In order to extract information about the dead zone in the wire chamber of interest, we

envoke the following algorithm:
e For each event:

— For each window:

* For the following criteria:

(i) Event Type 1 (Simple Clean)
(ii) Window Type 2 (Upstream Decay)
(iii) [Pt > 20 MeV

)

(iv) p, > py (Where p, is the momentum along the z-direction, and p,, is the
momentum along the u-direction)
(v) tolerance = £0.0980 cm (for PCs)
tolerance = +0.1980 cm (for DCs)

- Find the last (u,v) coordinates of the muon before it decays (requir-

ing that the last v-plane hit is pvlast_anal and the last u-plane hit is

14



Global | Z (cm) | Rotation | Instrumented | Plane
Plane # (°) | Wires/Plane | Type
5 | -49.7929 -45.0 48 \Y
6 | -49.3929 45.0 48 U
7 | -48.9929 -45.0 48 \Y
8 | -48.5929 45.0 48 U
9 | -48.1929 45.0 48 U
10 | -47.7929 -45.0 48 \Y%
11 | -47.3929 45.0 80 U
12 | -46.9929 -45.0 80 \Y%
13 | -42.1933 45.0 80 U
14 | -41.7933 -45.0 80 \Y
15 | -34.9948 45.0 80 U
16 | -34.5948 -45.0 80 \Y
17 | -29.7950 45.0 80 U
18 | -29.3950 -45.0 80 \Y%
19 | -22.5968 45.0 80 U
20 | -22.1968 -45.0 80 \Y
21 | -17.3975 45.0 80 U
22 | -16.9975 -45.0 80 \Y
23 | -10.1993 45.0 80 U
24 | -9.7993 -45.0 80 \Y
25 | -4.9997 45.0 80 U
26 | - 4.5997 -45.0 80 \Y

Table 4.1: Geometry Data of Upstream DCs

pulast_anal). The (u,v) coordinates give us an approximate location of

the dead zone.

- Does the upstream decay positron go back through the dead zone? If it
did, then the (u,v) coordinates recorded in the data may or may not be
from the planes we are analyzing. If the wire is dead when the positron
passes by it, there can’t be a recorded TDC signal from that particular

wire. So we cannot simply use the data (u,v) in the data trees.

15




Global | z(cm) | Rotation | Instrumented | Plane
Plane # (°) | Wires / plane | Type
11-59.79 45.0 160 U

2 1-59.39 -45.0 160 V

3 | -58.99 45.0 160 U

41 -58.59 -45.0 160 A%

271 -0.6 135.0 48 \Y%

281 -0.2 -135.0 48 U

Table 4.2: Geometry Data of Upstream PCs

- Obtain the last recorded position and momentum of the decay positron:
(u,v, z) and (py, pv, P.), directly from the trees in order to reconstruct its
track back to z = zpulast_anal cm (2-coordinate of pulast_anal).
This must be done in order to find the number of decay positrons that
“penetrate” the dead zone in pulast_anal vs. the number that actually

“fire” a wire in that region.

- If the coordinates from this tracking are within a certain tolerance of the

of the dead zone, we histogram this event as “penetrating” the dead zone.

- If the last recorded (u,v) for the decay positron are within a tolerance of
the (u,v) fired by the incident muon, we histogram this event as “firing”

in the dead zone.

4.4 The Tests

In order to determine whether or not the analysis code is working in a sane manor, it performs

the following tests:

4.4.1 Trackswimming Test

e [f the last u-plane hit was pulast_anal, and the last v-plane hit was pvlast_anal,
then:

(1) Histogram: (ufit — Udata)

16



Where uy;; is the u-coordinate of the trackswimming back to pulast_anal, and

Ugate 18 the u-coordinate recorded in data at pulast_anal.
(2) Histogram: (vt — Vdata)
Where vy is the v-coordinate of the trackswimming back to pvlast_anal, and

Vgate 18 the v-coordinate recorded in data at pvlast_anal.

This test has proved to be very useful. By looking at the two histograms, we can tell
whether or not the code is behaving the way it should be. If both histograms show a sharp
peak around zero, we know the trackswimming is consistent with data. A recent example of

this is shown in figure (4.1).

dzon01: Difference between Tracking and Data U for Decay Positron I |dzon01: Difference between Tracking and Data U for Decay Positron I
 9000F 5 07 . o
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E 7000 oo Mean  0.0003082 Dg_, 4000 E= [Total Events = 5777967 i 0.00101
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Z E Overflow 1643 3 3000F- Overfl 9
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E Integral  1.875+05 2500 Integral ~ 6.668+04
4000 F
E 2000
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Figure 4.1: Trackswimming Test

In fact, this test showed that PC6 was misaligned by a small amount. It has now been
implemented in the code to artificially shift all the relavent u-coordinates by wgp;sr = 0.04678

cm.
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Notice, in figure (4.1), that the RMS in RD (Raw Data) is larger then that for MC
(Monte Carlo) by about 38% in the u-direction, and about 17% in the v-direction.

4.4.2 Beam Spot Test

This is a simple test that confirms whether or not the muon beam spot from the M13

beamline is as it should be. Figure (4.2) shows two things:

(1) A projection of the beam spot on the u-axis of PC6 in terms of wire number. (Here

u = 0 is half way between wires 80 and 81).

(2) A 2D projection of the beam spot using u-coordinates from PC6 and v-coordinates
from PC5.

Both should be symmetric about their respective centers, and we can see the effect of the
wires discretizing the coordinate values. On the beam spot, high numbers of counts occur
only where two wires cross as illustrated by the color coded contour plot. However there are
still some counts in between wires. This is because of the weighted average performed in the
analysis of the wire chamber hits when more then one wire fires for the same event.

Basically we can check whether anything out of the ordinary is going on in this plot
just by looking the the shape of the beam spot. Root tells us that the mean value in the
v-direction is slightly off center, with a value of -0.3025. This is the way the beam spot is,
it is known to be not perfectly symmetric. So we should expect an asymmetry in the decay

positron hits along the v-direction because of this.

4.4.3 Dead Zone Test using u-coordinates

This is the first test performed to check whether the algorithm is working and shows indirect
evidence of the dead zone.

On the left hand side of figure (4.3) is a stack of two histograms. The larger histogram
is the number of positrons penetrating the dead zone, while the smaller one is the number of
positrons that caused a wire to fire in the dead zone. Both are in terms of the wire number
in PC6.

On the right hand side is the ratio: (number firing) / (number penetrating) histogrammed
vs. wire number in PC6.

The constant value of this histogram is a measure of the probability for a positron to
fire a wire when it penetrates the dead zone. About 45% of the time the positron will fire a

wire, while the rest of the time, the wires don’t fire at all.
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Figure 4.2: Beam Spot Test (dzonll & dzon2d02) taken from RD Set2 / Anal22
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Figure 4.3: Dead Zone Test using u-coordinate (dzon03/dzon04 & dzon05 with error bars)

taken from RD Set2 / Anal22

The error bars plotted here were calculated using equation (4.1):

o =

Where:
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e N — Number firing

e 7' — Number penetrating

4.4.4 Dead Zone Test using Window Times

Similar to figure (4.3), figure (4.4) contains the same histogram stack, except now in terms
of window time (ns). The number penetrating the dead zone has an exponential decay rate
characteristic of the muon lifetime: 7, = 2197.03 ns.

Also, the same ratio is plotted on the right hand side, which is also a measure of the
probability for a positron to fire a wire when penetrating the dead zone. This probability
increases with time, which makes sense, because the muon has less probability of creating
space charges in wires as its decay time is reached. That is, less and less muons are present in
the spectrometer as the window time increases because they have a decay time much shorter

than the window duration.
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Figure 4.4: Dead Zone Test using Window Times (dzon06/dzon07 & dzon08 with error bars)
taken from RD Set2 / Anal22

4.5 An Important Histogram

One of the most important histograms in this analysis is shown in figure (4.5). In order to
find strong evidence of the dead zone, we histogrammed the number of positrons penetrating

the dead zone against (vyit — Umuon), Where:
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® vy — positron trackswimming v-coordinate in PC6
® Unuon — POsitron data v-coordinate in PC6

So, when the muon and the positron pass near the same v-coordinate along a particular wire,
then: vy — Vmyon = 0.

We then histogrammed the number of positrons actually firing the dead zone wire against
the same variable, and histogrammed the same ratio: (Number Firing) / (Number Penetrat-

ing) with the correct error bars. These are shown in figure (4.5).

| HStack: Number Penetrating and Number Firing Dead Zone Ili |dzon33: Difference between Tracking and Muon V-Coords (Ratio)
dzon31
9000 Entries 249031 11—
8000 :_ Mean -0.001543
E RMS 0.2184
7000F- oeton ot L
6000 F Overflow 34 I w’m B § ‘l‘
5000 g Integral 2.4Isge+os 0.6 1 ) ".",wt" II
. dzon32 [ dzon33
4000 Entries 171993 H ’ Entries 171993
E Mean -0.0006989 0.47r Mean  0.04078
3000 I
E RMS 0.2277 H RMS 1.044
2000;— Underflow 17 02 : | Underflow 0.3208
r Overflow 8 H Overflow 0.2353
1000 H
F Integral 1.72e+05 [l Integral 123.4
0- OIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 15 2
Vfit - Vinuon [cm] Vfit - Vinuon (cm)

Figure 4.5: vfit — Umyon in PC6

Notice the significant “dip” occuring around v it — Vruen = 0. This shows strong evidence
of the dead zone in PC6. The “dip” occurs around zero because this is where the muon and
positron pass through the same region along the wire. If many positrons penetrate this
region, but a significantly smaller number of them actually fire that wire, then the ratio
of the two should produce a “dip”. We will see later that the area in this dip contains
information about the average length along the wire that is dead.

Next we filled a 2D histogram with all the ratio values for all the available window times:
1050 < tyin < 9000 ns. (This operation required the use of the subroutine T2DH_Divide (),
which divides one 2D histogram by another. There is not yet a function in root which
performs this operation). Plotting this as a lego2 plot in root gives the result shown in
figure (4.6).
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This 2D plot shows something similar to figure (4.5), infact if this plot were integrated
over time the result you’d get is that in figure (4.5). Here we can see that the “dip” changes
over time, it gets less and less deep as time increases.

The next step is to look more closely at these two plots, and try to get some useful
information out of them. Maybe the time-dependence of the “dip” can tell us about the

healing time of the dead zone.

4.6 The Fitting

How can we get information about the dead length and healing time out of the dead zone
plot in figure (4.6)? One way is to fit the data using the standard MINUIT least squares
fitter with some predefined function. It just so happens that ROOT contains this fitter, and

a macro has been written a to fit the dead zone histogram in figure (4.6) with the following
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function:

Z(z,t) = — A exp [—7 - —] +¢ (4.2)
Where:
® = — (Vfit — Unmuon)
® 1t = twindow

e A — parameter; Gaussian amplitude (negative)

75, — parameter; Dead zone healing time
e o — parameter; Offset from z = 0

e 0 — parameter; Gaussian RMS

e { — parameter; Offset from Z = 0

(The motivation for using this function will be explained later).

We then hypothesize that the parameter A in this function is related to the dead length
Lgeaqa- But how can we find this relation?

The answer can be found by using Monte Carlo simulations of the experiment. Suppose,
in the simulation, we implemented a dead zone based on knowledge of its effect, then ran a
few million events to analyze with my “Deadzone” code. How can we get back out of the
analysis what we put in as the Lge.q value?

In the Monte Carlo program, the dead zone is approximately represented by a square
well, that is, a ratio histogram from MC similar to figure (4.5) is almost a square well when
put into the simulation. But, since the experiment is measured with limited resolution,
measuring the simulated data with the “deadzone” analysis code gives a smeared result.
This can be described using convolution theory.

Recall the definition of a convolution, given by equation (4.3):

0
Clz)=s+g= 1 _ s(t)g(x — t)dt (4.3)
If s(x) is the original function (square well), and g(x) is the smearing function (normalized
Gaussian), then the convoluted function is C(x).
Let s(z) and g(z) be defined by equations (4.4) and (4.5):

(@) :{ ¢ if |z| > L/2 04)

0 if 2] < L/2
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o) = = exp (‘“’) (15)

210 20
Then it can be shown that the convolution of s(z) with g(x) is given by equation (4.7):

C(z) = % [erfc (%) _ erfc (%) +2] (4.6)

EA b _p
_22 [Teat+ €A (4.7)
V7 Ja
Where:
o=
_ z+L/2
°b="75"

and erfc(x) is the complementary error function, defined by:

erfc(z) =1 —erf(z) = % /woo e dt (4.8)

It is now clear that this particular convolution is quite complicated, and cannot be reduced
from its integral form. Under certain conditions, it can be approximated by a Gaussian with
a negative amplitude. As shown in figure (4.7), there are two extremes to equation (4.6):
one is when ¢ < L, the other is when o > L.

On the top, for 0 < L, the curve shape is dominated by the two error functions individ-
ually, that is, they sum in regions of x where their values are small. Thus the curve is not
dominated by the sum of the error functions.

However, on the bottom, for ¢ > L, the curve shape is dominated by the sum of the
two error functions. The result is something that can be approximated by a Gaussian with
a negative amplitude. This is the case we are most interested in. There is no reason why
this function cannot be fit by an error function, but it is considerably simpler to model it
with a Gaussian as described.

We want to use the “conservation of area under the curve” property of convolutions in
our analysis. If the area under the curve of the square well function s(z) is equal to that of
the convoluted function C(z), then the area inside the “dip” of s(x) is also equal to the area
inside the dip of C(z), which is no longer square and impossible to integrate analytically.
But if we approximate c(z) with a Gaussian, it becomes rather simple to find a relation
between the length of the dead zone that is input in the Monte Carlo, and the amplitude we

measure upon analysis.
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Figure 4.7: Two extremes of C(x)

Using the conservation of area property of convolutions, we can equate the following two

expressions:
| s@)dz = €Licas (4.9)
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SN 00 Ao 2
/ C(zx)dx =~ exp (_x_) dz = A, (4.10)

o C(z) =€6—C(x)

When equations (4.9) and (4.10) are equated we obtain a very simple relation between

the dead length Lg..q and the amplitude of the convolution A,:

A,
Ldoad = + (4.11)

This result can be implemented into our fitting function, from which we can calculate the

dead length directly. The result is given by equation (4.12):

_éf;j_gad exp l_ (zr—a)® L] iy (4.12)
xe

Z(x,t) =
(z,7) 202 Th
The motivation for using this function now becomes quite evident. We use a normalized

Gaussian with a negative amplitude along the x-direction, and we hypothesize that the “dip”
heals, or grows, exponentially. Hence the e=*/"» factor. Let’s see how well this function fits

the “Deadzone” histogram shown in figure (4.6).
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Chapter 5

Results

Using my “Deadzone” analysis code on PC6 with about 1.6 x 107 events in SET2 / ANAL22,
we find the following results when fit with ROOT:

Parameter Value Error
Lacad 0.4811 cm | +£0.0050 cm
Th 2444 ns 441 ns

o || -0.00063 ¢cm | +0.00137 cm
o 0.2094 cm | 40.0027 cm

B 0.8953 +0.0028
x> ndf X2 /ndf
5109 3864 1.322

Table 5.1: Results for Fitting Dead Zone in PC6

Figure (5.1) shows the function the parameters in table (5.1) describe.

The ratio of the x? over the number of degrees of freedom (ndf) are close to one. This
suggests that both fits to the dead zones in PC5 and PC6 were done reasonably well.

The size of the dead zone in PC5, as characterized by the dead length Lge.q, is smaller
than that in PC6 by about 50%. The healing time 7, is also smaller by about 25% in PC5
as compared to PC6.

This is expected because the muon deposits more energy in the wire chamber closer to
its decay vertex, thus creating the larger dead zone. Since PC6 is closer to the target, and
therefore the average position of muon decay, the dead zone there is larger than in PC5,

behind it. Larger dead zones have a larger Lg..q and a longer 7,. So the results found agree
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Parameter Value Error
Lgeaq || 0.2630 cm | £0.0117 cm

T 1856 ns +82 ns

a || 0.0170 cm | £0.0023 cm
o || 0.1064 cm | +0.0021 cm
B 0.8794 +0.0014
X2 ndf X% /ndf
4385 4988 0.8791

Table 5.2: Results for Fitting Dead Zone in PCH
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00430000
(ns)

70008000°

my
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Figure 5.1: Fitting function Z(x,t)

with the theory.
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5.1 The Scaling Factor

In order to measure the uncertainty that the dead zone creates with respect to the Michel
parameters, the use of Monte Carlo simulation is needed yet again. The scaling factor is a
convenient way to measure this quantity.

Suppose we have a measurable quantity R that depends on another variable z for which
the uncertainty is known. We wish to find the systematic uncertainty of R. Then the scaling

factor, S, is defined as:

Tpmce
S =" 5.1
o (5.1)

Where:
e zpp — value found in raw data creating the quantity R(zgp)

e 1)/¢c — value input into Monte Carlo analysis which is to exagerate the effect of R(zrp)

in raw data

Then the systematic uncertainty of R is given by:

o2 (R) = % (AR +03y) (5.2)

sYs
Where:

e AR is the central value result of a fit done on the difference between a normal Monte
Carlo data set (with no dead zone) and a Monte Carlo data set with a dead that

exagerates that in real data.
e oar is the statistical uncertainty on the central value obtained from the fit.

In our analysis, the variable x is equivalent to the number of counts lost due to the dead
zone. So we create a simulation with an exagerated dead zone, where the number of counts
lost will be a lot more than in real life (raw data).

The dependent variable R(z) is then the value of any one of the Michel parameters: p,
d, n, or £&. And afys (R) is the systematic uncertainty of a Michel parameter associated with
the number of counts lost due to the dead zone.

Unfortunately, the Monte Carlo has not yet been fully debugged and the results it gives
for the dead zone are not yet satisfactory. Until it has been fully debugged, this study cannot

be completed.

29



Chapter 6

Discussion and Conclusion

In summary of this dead zone study, we can now answer the questions that were posed as

motivation for performing it:

(1)

How large is the dead zone on average?
In PC5: Lyeaq = 0.2630 & 0.0117 cm
In PC6: Lgeaq = 0.4811 £ 0.0050 cm

How long does it take for the dead zone to “heal”?

In PC5: 7, = 1856 + 82 ns

In PC6: 75, = 2444 4+ 41 ns

What is the probability that a positron will go through the dead zone without firing
the corresponding wire?

There is not one answer to this question, because this probability is time dependent.
A more relavent question would be: what is the probability that a positron will go

through the dead zone without firing its corresponding wire at a time ¢, ?

This question can be answered by fitting the histogram shown on the right hand side
of figure (4.4) with a straight line:

P(t)=at+b (6.1)
For 1000 < ¢, <9000 ns. The fit parameters we found to be:

— a = (5.032 + 0.070) x 1075 s~
— b= (—0.01645 = 0.00195)
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So, for example, at a time half way through the event window: P (4000 ns) = 0.185 £
0.003. Where the uncertainty in the probability is given by:

SP(t) = \/(da)2t2 + (6b)? (6.2)

But this is a measure of the probability that a positron will fire a wire in the dead
zone, so the probability that the positron will not fire a wire in the dead zone is:
1 — P(t) = 0.815 4 0.003.

(4) What effect does this dead zone have on the analysis of the Michel parameters? Ie;

what is the systematic uncertainty of the dead zone effect?

As mentioned in §5.1, there is still some debugging to do in the Monte Carlo simulation

code. Until that has been completed this question cannot be completely answered.

Some rough estimates of the systematic error for the dead zone have been calculated to
be 0.00 x 1073. If these results prove accurate, once a proper calculation can be done,

then the dead zone systematic will have little to no effect on the Michel parameters.

At present, the TWIST group is very close to publishing their first results of the Michel
parameters to the 1073 level. In order to ensure that this experiment can continue on to
the 10~ level, they must be sure that their systematics are lower than a few parts in 10°.
Otherwise the Michel parameters will be limited by the systematics of the experiment.

This dead zone study will add another value to the table of systematics that the experi-
ment has already accumulated. But on top of that, this study has shown evidence of a time
dependence on the efficiency of proportional counters when dealing with large energy loss.
When using a muon beam where the muons are incident on the spectrometer at some rate,
the creation and destruction of a dead zone near the end of the muon lifetime will be periodic
only if the healing time of the dead zone is less than the period of incident muons (1/rate).

In fact, it would be even better to have an incident muon every three or four times 7,
because the healing time is really the time it takes for half of the dead zone to heal. Think
of it as a decay time for an ensemble of radioactive particles.

If 75, is larger than the period of incident muons, the dead zone will essentially be there
forever. This is not good for the efficiency of the proportional chambers, because they will
continually lose hits. There is even a chance of the dead zone growing to the size of the
entire chamber plane, if the rate of muon incidence is large enough. Muons that continually
bombard the PC without enough time for the ions to recombine with the electrons will cause

the dead zone to grow, until the space charge inside the PC reaches some upper limit.
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This subject has not been thoroughly studied enough to confirm this theory. Further
studies on dead zones should be done using Monte Carlo simulations of single multi-wire
proportional counters. This kind of research might be performed by myself over the next

year as an undergraduate thesis.
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