Upstream Stops Analysis

Current Status

Ryan Bayes

 \mathcal{TWIST} Collaboration Meeting, January 31, 2009

- validate the Monte Carlo with respect to data.
 - evaluate difference in scattering and energy loss
 - estimate differences in the tails
- refine systematics of the positrons interactions in the detector.
 - measure the associated scale for systematics
 - sensitivities measured from target stops
- test the efficiency of the track reconstruction.
 - feeds back into assumption of fiducial region

• Latest analysis of data sets

Set Number	Description	Runs Analysed	Good Runs
set73anal8	Silver stopping	385	365
	target		
set80anal1	Aluminium stop-	353	209
	ping target		
set89anal1	Large Aluminium	655	635
	target		

• One data set has not been analysed: set 68.

-

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Latest Monte Carlo generation and Analysis

Generation #	Description	Runs Generated	Good Runs
gen432anal4	Match s73an8	516	508
gen433anal1	Match s73an8,	297	295
	δ -rate $ imes$ 0.01		
gen434anal1	Match s73an8,	294	280
	δ -rate \times 3		
gen435anal1	Match s73an8,	279	265
	δ -rate $ imes$ 10		
gen630anal1	Match s89an1	811	769

will regenerate MC to match set 73, set 89

- do not use production Monte Carlo
- will need to generate MC to match set 80

	MPV (keV/c)	FWHM (keV/c)
Std Ag Tgt (s73a8)	$\textbf{41.64} \pm \textbf{0.14}$	140.16 ± 0.08
Std Ag Tgt. Sim (g432a4)	44.20 ± 0.09	135.11 ± 0.06
Lg Al Tgt. (s89a1)	$\textbf{20.96} \pm \textbf{0.09}$	124.92 ± 0.07
Lg Al Tgt. Sim. (g630a1)	$\textbf{22.15} \pm \textbf{0.10}$	$\textbf{121.19} \pm \textbf{0.08}$
Std Al Tgt (s80a1)	$\textbf{32.75} \pm \textbf{0.17}$	130.5 ± 0.1
2004 Al Target (s33a3)	$\textbf{28.4} \pm \textbf{0.1}$	155.9 ± 0.1
2004 Al Target (g333a1)	$\textbf{29.65} \pm \textbf{0.04}$	141.64 ± 0.04

- Momentum loss differs by 2-3 keV/c between data and MC
- Difference between Lg. Al. Tgt. and Std. Al. Tgt. Momentum loss due to missing PCs at target.

< ロト < 同ト < ヨト < ヨト

Integrated Difference between US and DS: $(\Delta p) \cos \theta$

- Events within the fiducial region
- Large target geometry

 $\begin{tabular}{|c|c|c|c|c|} \hline Tail \ count \ ratio: \\ \hline data & 0.01054 \pm 0.00008 \\ \hline MC & 0.01069 \pm 0.00009 \\ \hline Compare \ to \ Rob's \ Results \\ \hline data & 0.0142 \pm 0.0001 \\ \hline MC & 0.0142 \pm 0.0001 \\ \hline \end{tabular}$

Ryan Bayes (UVIC)

Integrated Difference between US and DS: $(\Delta p) \cos \theta$

Distribution of momentum differences for data and MC

- Events within the fiducial region
- Large target geometry

•	Tail count ratio:				
	data	0.01054 ± 0.00008			
	MC	0.01069 ± 0.00009			
	Compare to Rob's Results				
	data 0.0142 ± 0.000				
	MC	0.0142 ± 0.0001			

Ryan Bayes (UVIC)

USstops 2009

January 31, 2009 6 / 20

Integrated Difference between US and DS: $\Delta \theta$

	MPV (mrad)	FWHM (mrad)
Std Ag Tgt (s73a8)	$\textbf{-0.07} \pm \textbf{0.04}$	54.34 ± 0.03
Std Ag Tgt. Sim (g432a4)	-0.21 \pm 0.03	51.31 ± 0.02
Lg Al Tgt. (s89a1)	0.11 ± 0.01	$\textbf{23.47} \pm \textbf{0.01}$
Lg Al Tgt. Sim. (g630a1)	$\textbf{-0.08} \pm \textbf{0.02}$	$\textbf{24.12} \pm \textbf{0.01}$
Std Al Tgt (s80a1)	0.09 ± 0.04	$\textbf{28.58} \pm \textbf{0.03}$
2004 Al Target (s33a3)	0.97 ± 0.02	$\textbf{29.75} \pm \textbf{0.02}$
2004 Al Target (g333a1)	0.581 ± 0.007	$\textbf{29.159} \pm \textbf{0.007}$

- Mean scattering angle differs by 0.15 mrad between modern MC and Data
- Mean scattering angle differs by 0.4 mrad between 2004 MC and Data
- Scattering angle is still non zero Why?

イロト イポト イヨト イヨト

Integrated Difference between US and DS: $\Delta \theta$

Distributions of scattering angle at the target for Data and MC

- Event from within fiducial region
- Large target geometry
- Difference between distributions very small
 - Indicates differences in MPV and σ

January 31, 2009

8/20

Integrated Difference between US and DS: $\Delta \theta$

Distributions of scattering angle at the target for Data and MC

- Event from within fiducial region
- Large target geometry
- Difference between distributions very small
 - Indicates differences in MPV and σ

Ryan Bayes (UVIC)

USstops 2009

January 31, 2009 8 / 20

Consider peak momentum loss through the momentum spectrum

- Peak mismatch occurs at higher momenta
- Typical difference \approx 3-5 keV/c
- Seems to be a real effect in the slope of Δp

USstops 2009

Consider peak momentum loss through the momentum spectrum

- Peak mismatch occurs at higher momenta
- Typical difference \approx 3-5 keV/c
- Seems to be a real effect in the slope of Δp

Consider peak momentum loss through the momentum spectrum

- Peak mismatch occurs at higher momenta
- Typical difference \approx 3-5 keV/c
- Seems to be a real effect in the slope of Δp

∃ ► 4 Ξ

Consider peak momentum loss through the momentum spectrum

- Peak mismatch occurs at higher momenta
- Typical difference \approx 3-5 keV/c
- Seems to be a real effect in the slope of Δp

4 B > 4 B

Momentum Bias At The Target Module

- US and DS biases have the opposite sign.
- Magnitude of biases is similar (Not the same)
- Bias changes little with momentum (≈2 keV/c)

USstops 2009

Ryan Bayes (UVIC)

Momentum Bias At The Target Module

- US and DS biases have the opposite sign.
- Magnitude of biases is similar (Not the same)
- Bias changes little with momentum (≈2 keV/c)

January 31, 2009

10/20

Consider Positron entering the detector with momentum p_0

- At PC 22: $p_{US} = p_0 \frac{\Delta_{TR}}{2\cos\theta_{true}} \frac{C_{US}}{\cos\theta}$
- At PC 23: $p_{DS} = p_0 \frac{\frac{3}{2}\Delta_{TR} + \Delta_{tgt}}{\cos \theta_{true}} + \frac{C_{DS}}{\cos \theta}$
- Momentum Bias at PC 22: $B_{US} = \frac{\Delta_{TR}}{2\cos\theta_{true}} \frac{C_{US}}{\cos\theta}$
- Momentum Bias at PC 22: $B_{DS} = \frac{C_{DS}}{\cos \theta} \frac{\Delta_{TR}}{2 \cos \theta_{true}}$
- US momentum bias opposite sign w.r.t. to DS momentum bias
- Difference of Momenta across target:

$$\Delta p = p_{US} - p_{DS} = rac{\Delta_{tgt}}{\cos \theta_{true}} + B_{US} - B_{DS}$$

Inefficiencies Measured from Large Target geometries

Monte Carlo less efficient than data

 Upstream track, No Downstream track;

Data

Inefficiencies Measured from Large Target geometries

USstops 2009

Inefficiencies Measured from Large Target geometries

Data

Monte Carlo less efficient than data

 Upstream track, No Downstream track; P(u|D)

Inefficiencies Measured from Large Target geometries

Ryan Bayes (UVIC)

USstops 2009

Inefficiencies Measured from Large Target geometries

Monte Carlo less efficient than data

Data

Monte Carlo

• Difference:

(Data - Monte Carlo)/ σ

- Upstream track Inefficiency
 - Downstream track, No upstream track; P(d|U)

 Downstream track Inefficiency

> Upstream track, No Downstream track; P(u|D)

Inefficiencies Measured from Large Target geometries

Ryan Bayes (UVIC)

USstops 2009

Inefficiencies Measured from Large Target geometries

Monte Carlo less efficient than data

Data

Monte Carlo

Difference: (Data - Monte Carlo)/ σ

- Upstream track
 Inefficiency
 - Downstream track, No upstream track;
 P(d|U)
- Downstream track Inefficiency
 - Upstream track, No Downstream track; P(u|D)

Inefficiencies Measured from Large Target geometries

Ryan Bayes (UVIC)

USstops 2009

Look for reconstructed tracks when there is a MC track

Assuming MC track exists when downstream track exists

 $P(u|D) \approx P(u|M) - P(u \cap d|M)$

Ryan Bayes (UVIC)

USstops 2009

January 31, 2009 13 / 20

∃ ► < ∃</p>

Look for reconstructed tracks when there is a MC track

Assuming MC track exists when downstream track exists

 $P(u|D) \approx P(u|M) - P(u \cap d|M)$

Ryan Bayes (UVIC)

USstops 2009

January 31, 2009 13 / 20

A B F A B F

< 61 b

Look for reconstructed tracks when there is a MC track

Assuming MC track exists when downstream track exists

 $P(u|D) \approx P(u|M) - P(u \cap d|M)$

Look for reconstructed tracks when there is a MC track

Assuming MC track exists when downstream track exists

```
P(u|D) \approx P(u|M) - P(u \cap d|M)
```

4 ∃ > < ∃ >

4 A 1

Consequences of Inefficiency Measurements

- The region immediately surrounding fiducial is sound
- Difference in data and Monte Carlo for US and DS
 - is small (0.2 σ)
 - is similar
 - is negative (eg. $P_{data}(u|D) > P_{MC}(u|D)$)

If fiducial region defined by stability of inefficiency:

- fiducial region may be expanded.
- will have to reconsider justification of cuts.

Momentum and Angle Effects in the Endpoint Calibration

- Can we relate endpoint calibration to US stops?
- Difference between data and MC momentum behaviour

• Results of rel. ecal. s84a6 to g584a1+2 $a_{up} = 4.9 \pm 1.4$ $a_{dn} = -4.8 \pm 3.2$ $b_{up} = -7.34 \pm 2.13$ $b_{dn} = -15.56 \pm 5.2$

Momentum and Angle Effects in the Endpoint Calibration

- Can we relate endpoint calibration to US stops?
- Difference between data and MC momentum behaviour

Change in the Momentum edge Between Data and MC

• Results of rel. ecal. s84a6 to g584a1+2 $a_{up} = 4.9 \pm 1.4$ $a_{dn} = -4.8 \pm 3.2$ $b_{up} = -7.34 \pm 2.13$ $b_{dn} = -15.56 \pm 5.2$

H 5

Relationship between Energy Calibration and US Stops

- Assume energy calibration result is completely additive ie. p_{rec} = p_{true} + B
- The result of ecal measurement

$$\Delta p_{ecal}|_{edge} = p_{true}^{MC} + B^{MC} - p_{true}^{data} - B^{data}$$

• Sum of upstream and downstream measurements

$$\Delta p_{ecal}^{US} + \Delta p_{ecal}^{DS} = B_{US}^{MC} + B_{DS}^{MC} - B_{US}^{data} - B_{DS}^{data}$$

Difference between data and Monte Carlo in upstream stops

$$\Delta p_{US-DS}^{MC} - \Delta p_{US-DS}^{data} = B_{US}^{MC} + B_{US}^{data} - B_{DS}^{MC} - B_{DS}^{data}$$

• N.B. in US stops $B_{US} \approx -B_{DS} + \delta$ so

$$\Delta p_{US-DS}^{MC} - \Delta p_{US-DS}^{data} = -\Delta p_{ecal}^{US} + \Delta p_{ecal}^{DS} + \delta^{MC} - \delta^{data}$$

Ryan Bayes (UVIC)

- Exaggerate delta ray cross section in target muon stops
- Identify delta rays in data and Monte Carlo
 - Measure difference in production rates
 - Compare difference rate in exaggerated simulation
 - Scaling Factor to be calculated:

$$S = rac{R^{MC}_{\delta imes 10} - R^{MC}_{\delta}}{R^{data}_{\delta} - R^{MC}_{\delta}}$$

- Rate most easily measured in upstream stops
 - ★ Delta rays can be clearly isolated from positrons
 - ★ Unambiguous charge measurement

イロト イポト イヨト イヨト

Match an extra downstream track to a through-going positron.

- This requirement alone is insufficient
- Data and Monte Carlo must be as similar as possible
- Track characteristics must match (CDA cut required)

I > <
 I >
 I

э

★ ∃ > < ∃ >

Current Status

- More exacting criteria has been used
- There are still some problems

- Delta rate suppressed simulation shows no suppression
- Fit rate still shows significant background
- Incomplete correlation between the rates in truth banks and reconstruction
- If these results were accepted, $S = 330 \pm 2481$
- Difference $R_{\delta}^{data}-R_{\delta}^{MC}=(1\pm9) imes10^{-6}$ (10 %)

- Match between data and Monte Carlo good for all three target modules
- Momentum bias results (if not source) is understood
 - relationship with for Δp_{US-DS} and ECal.
- Inefficiencies (from large target data) show consistant (flat) results US and DS
 - ► small deviation in data/ MC difference through fiducial
 - Inconsistancy between MC derived and US stop derived ineff. understood
- Delta ray systematc progressing

イロト イポト イヨト イヨト

Inefficiencies Measured from Large Target geometries

Look for reconstructed tracks when there is a MC track

 No upstream track reconstructed: MC track exists

 No downstream track reconstructed: MC track exists

 No upstream or downstream track reconstructed: MC track exists

Assuming MC track exists when downstream track exists

 $\mathsf{P}(u|D) = \mathsf{P}(u|M) - \mathsf{P}(u \cup d|M)$