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Outcomes of upstream stops studies

validate the Monte Carlo with respect to data.
I evaluate difference in scattering and energy loss
I estimate differences in the tails

refine systematics of the positrons interactions in the detector.
I measure the associated scale for systematics
I sensitivities measured from target stops

test the efficiency of the track reconstruction.
I feeds back into assumption of fiducial region
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Upstream Stops Data Sets

Latest analysis of data sets

Set Number Description Runs Analysed Good Runs
set73anal8 Silver stopping

target
385 365

set80anal1 Aluminium stop-
ping target

353 209

set89anal1 Large Aluminium
target

655 635

One data set has not been analysed: set 68.
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Upstream Stops Monte Carlo

Latest Monte Carlo generation and Analysis

Generation # Description Runs Generated Good Runs
gen432anal4 Match s73an8 516 508
gen433anal1 Match s73an8,

δ-rate ×0.01
297 295

gen434anal1 Match s73an8,
δ-rate ×3

294 280

gen435anal1 Match s73an8,
δ-rate ×10

279 265

gen630anal1 Match s89an1 811 769

will regenerate MC to match set 73, set 89
I do not use production Monte Carlo

will need to generate MC to match set 80
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Integrated Difference between US and DS: (∆p) cos θ

MPV (keV/c) FWHM (keV/c)
Std Ag Tgt (s73a8) 41.64 ± 0.14 140.16 ± 0.08

Std Ag Tgt. Sim (g432a4) 44.20 ± 0.09 135.11 ± 0.06
Lg Al Tgt. (s89a1) 20.96 ± 0.09 124.92 ± 0.07

Lg Al Tgt. Sim. (g630a1) 22.15 ± 0.10 121.19 ± 0.08
Std Al Tgt (s80a1) 32.75 ± 0.17 130.5 ± 0.1

2004 Al Target (s33a3) 28.4 ± 0.1 155.9 ± 0.1
2004 Al Target (g333a1) 29.65 ± 0.04 141.64 ± 0.04

Momentum loss differs by 2-3 keV/c between data and MC
Difference between Lg. Al. Tgt. and Std. Al. Tgt. Momentum loss
due to missing PCs at target.
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Integrated Difference between US and DS: (∆p) cos θ

Distribution of momentum differences for data and MC
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Integrated Difference between US and DS: ∆θ

MPV (mrad) FWHM (mrad)
Std Ag Tgt (s73a8) -0.07 ± 0.04 54.34 ± 0.03

Std Ag Tgt. Sim (g432a4) -0.21 ± 0.03 51.31 ± 0.02
Lg Al Tgt. (s89a1) 0.11 ± 0.01 23.47 ± 0.01

Lg Al Tgt. Sim. (g630a1) -0.08 ± 0.02 24.12 ± 0.01
Std Al Tgt (s80a1) 0.09 ± 0.04 28.58 ± 0.03

2004 Al Target (s33a3) 0.97 ± 0.02 29.75 ± 0.02
2004 Al Target (g333a1) 0.581 ± 0.007 29.159 ± 0.007

Mean scattering angle differs by 0.15 mrad between modern MC
and Data
Mean scattering angle differs by 0.4 mrad between 2004 MC and
Data
Scattering angle is still non zero - Why?
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Integrated Difference between US and DS: ∆θ

Distributions of scattering angle at the target for Data and MC
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Integrated Difference between US and DS: ∆θ

Distributions of scattering angle at the target for Data and MC
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Source of Peak Deviations in (∆p) cos θ

Consider peak momentum loss through the momentum spectrum

Momentum (MeV/c)
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Momentum Bias At The Target Module
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Momentum Bias At The Target Module
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Schematic Approach to Momentum Bias

Consider Positron entering the detector with momentum p0

At PC 22: pUS = p0 − ∆TR
2 cos θtrue

− CUS
cos θ

At PC 23: pDS = p0 −
3
2 ∆TR+∆tgt

cos θtrue
+ CDS

cos θ

Momentum Bias at PC 22: BUS = ∆TR
2 cos θtrue

− CUS
cos θ

Momentum Bias at PC 22: BDS = CDS
cos θ −

∆TR
2 cos θtrue

US momentum bias opposite sign w.r.t. to DS momentum bias
Difference of Momenta across target:

∆p = pUS − pDS =
∆tgt

cos θtrue
+ BUS − BDS
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Upstream Downstream Relative inefficiency
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries

Difference in Inefficiency
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.50

20

40

60

80

100

120

140

160

180

hdiff_dist
Entries  1073
Mean   -0.2123
RMS    0.2054

Monte Carlo less efficient than data

Data
Monte Carlo
Difference:
(Data - Monte Carlo)/σ
Upstream track
Inefficiency

I Downstream track, No
upstream track;
P(d |U)

Downstream track
Inefficiency

I Upstream track, No
Downstream track;
P(u|D)

Ryan Bayes (UVIC) USstops 2009 January 31, 2009 12 / 20



Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Upstream Downstream Relative inefficiency

Inefficiencies Measured from Large Target geometries
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Truth Bank Derived Inefficiency

Look for reconstructed tracks when there is a MC track
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Assuming MC track exists when downstream track exists

P(u|D) ≈ P(u|M)− P(u ∩ d |M)
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Truth Bank Derived Inefficiency
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Truth Bank Derived Inefficiency
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Truth Bank Derived Inefficiency
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Consequences of Inefficiency Measurements

The region immediately surrounding fiducial is sound
Difference in data and Monte Carlo for US and DS

I is small (0.2 σ)
I is similar
I is negative (eg. Pdata(u|D) > PMC(u|D) )
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Momentum and Angle Effects in the Endpoint
Calibration

Can we relate endpoint calibration to US stops?
Difference between data and MC momentum behaviour
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Results of rel. ecal.
s84a6 to g584a1+2
aup = 4.9± 1.4
adn = −4.8± 3.2
bup = −7.34± 2.13
bdn = −15.56± 5.2
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Relationship between Energy Calibration and US
Stops

Assume energy calibration result is completely additive
ie. prec = ptrue + B
The result of ecal measurement

∆pecal |edge = pMC
true + BMC − pdata

true − Bdata

Sum of upstream and downstream measurements

∆pUS
ecal + ∆pDS

ecal = BMC
US + BMC

DS − Bdata
US − Bdata

DS

Difference between data and Monte Carlo in upstream stops

∆pMC
US−DS −∆pdata

US−DS = BMC
US + Bdata

US − BMC
DS − Bdata

DS

N.B. in US stops BUS ≈ −BDS + δ so

∆pMC
US−DS −∆pdata

US−DS = −∆pUS
ecal + ∆pDS

ecal + δMC − δdata
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Delta Ray Systematic Method

Exaggerate delta ray cross section in target muon stops
Identify delta rays in data and Monte Carlo

I Measure difference in production rates
I Compare difference rate in exaggerated simulation
I Scaling Factor to be calculated:

S =
RMC

δ×10 − RMC
δ

Rdata
δ − RMC

δ

I Rate most easily measured in upstream stops
F Delta rays can be clearly isolated from positrons
F Unambiguous charge measurement
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Delta Ray Measurements

Match an extra downstream track to a through-going positron.

 Delta Rate Scale Factor
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Current Status

More exacting criteria has been used
There are still some problems
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Difference Rdata
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δ = (1± 9)× 10−6 ( 10 %)
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Conclusions

Match between data and Monte Carlo good for all three target
modules
Momentum bias results (if not source) is understood

I relationship with for ∆pUS−DS and ECal.

Inefficiencies (from large target data) show consistant (flat) results
US and DS

I small deviation in data/ MC difference through fiducial
I Inconsistancy between MC derived and US stop derived ineff.

understood

Delta ray systematc progressing
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Inefficiencies Measured from Large Target geometries

Momentum (MeV/c)
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Monte Carlo less efficient than data

Data
Monte Carlo
Difference:
(Data - Monte Carlo)/σ
Upstream Track
Inefficiency

I Downstream track:
No upstream track

Downstream track
Inefficiency

I Upstream track:
No downstream track

Look for reconstructed tracks when there is a MC track
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Momentum (MeV/c)
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-110 No upstream track
reconstructed: MC track
exists
No downstream track
reconstructed: MC track
exists
No upstream or
downstream track
reconstructed: MC track
exists

Assuming MC track exists when downstream track exists

P(u|D) = P(u|M)− P(u ∪ d |M)
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