!pmuxi_lim pmuxidelrholim pmuxidelrholim = ?1 n_ckm = 11 ! should lower limit be 0 or -1? generate cth_r 0 ,, 1 n_ckm cth_l = 0.9735 cth_ratio = cth_r/cth_l n_cpv = 11 generate cth_cpv 0 ,, 1 n_cpv ! parameters in quadratic eqn ! square of mass ratio epsi = `(m_l*m_l/(m_r*m_r))' ! from Herczeg, R = 1 - pmuxidelrholim ! MLRS: zeta^2 + zeta*2*epsi +(2*epsi*epsi -R/2) = 0 b_manif = `(2*epsi)' c_manif = `(2*epsi*epsi + (pmuxidelrholim - 1.)/2.)' ! NMLRS: ((g_r/g_l)*zeta)^2 + (g_r/g_l)*zeta*2*epsi*(g_r/g_l)*(costh_r/costh_l)*cos(alpha+omega) !+(2*[epsi*(g_r/g_l)*(costh_r/costh_l)]^2 - R/2) <~= 0 (eq. 62) ! ! so consider epsi as (g_r**2/g_l**2)*epsi ! and zeta as (g_r/g_l)*zeta b_nonmanif = `(2*epsi*rckm*cpv)' c_nonmanif = `(2.*(epsi*rckm)**2 + (pmuxidelrholim - 1.)/2.)' ! constants m_l = 80.423 lim = pmuxidelrholim ! for non-manifest LR symmetry, with 0<=V_ud^R<=1, using cth_ratio m_r = [0:1500:5] zeta_lower = m_r - m_r ! start with zeros zeta_upper = m_r - m_r ! start with zeros scalar\dummy jj scalar\dummy kk do jj=[1:n_ckm] do kk=[1:n_cpv] if (exist(`zeta_lower_save')) then destroy zeta_lower_save zeta_lower_save = m_r - m_r ! start with zeros if (exist(`zeta_upper_save')) then destroy zeta_upper_save zeta_upper_save = m_r - m_r ! start with zeros rckm = cth_ratio[jj] cpv = cth_cpv[kk] b = eval(b_nonmanif) c = eval(c_nonmanif) determ = b*b/4. - c realroot = where(determ>1.e-10) norealroot = where(determ<=1.e-10) ! note positive b/2., since rckm can be <0 and we want maximum zeta_save[realroot] = abs(-b[realroot])/2. + sqrt(determ[realroot]) !zeta_lower_save[realroot] = -b[realroot]/2. - sqrt(determ[realroot]) !zeta_upper_save[realroot] = -b[realroot]/2. + sqrt(determ[realroot]) !zeta_lower_save[norealroot] = 1. !zeta_upper_save[norealroot] = -1. !save the minimum/maximum values of zeta zeta_upper = max(zeta_upper,zeta_save) !zeta_lower = min(zeta_lower,zeta_lower_save) !zeta_upper = max(zeta_upper,zeta_upper_save) enddo enddo m_r_rev = m_r zeta_lower = -zeta_upper !m_range = where((zeta_upper - zeta_lower)>1.e-10) !m_rr = m_r[m_range] !m_r_rev = m_rr !zeta_upper = zeta_upper[m_range] !zeta_lower = zeta_lower[m_range] sort\down m_r_rev zeta_lower massvar_nonmanif = m_r_rev//m_r zetavar_nonmanif = zeta_lower//zeta_upper m_low_nonmanif = min(massvar_nonmanif) display ` ' display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display `Minimum non-manifest LRS W_R mass is '//rchar(m_low_nonmanif) display `for P_mu*xi*delta/rho limit = '//rchar(pmuxidelrholim) !display `DO NOT TRUST THIS! It is certainly wrong.' display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display ` ' destroy zeta_lower zeta_upper skip1: ! for manifest LR symmetry, with V_ud^R = V_ud^L m_low_manif = m_l*sqrt(sqrt(2/(1.-lim))) + 1.e-4 display ` ' display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display `Minimum pseudomanifest LRS W_R mass is '//rchar(m_low_manif) display `for P_mu*xi*delta/rho limit = '//rchar(pmuxidelrholim) display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display ` ' destroy m_r m_r = [m_low_manif:1500:5] b = eval(b_manif) c = eval(c_manif) determ = b*b/4. - c zeta_lower = -b/2. - sqrt(determ) zeta_upper = -b/2. + sqrt(determ) m_r_rev = m_r sort\down m_r_rev zeta_lower massvar_manif = m_r_rev//m_r zetavar_manif = zeta_lower//zeta_upper