!pmuxi_lim pmuxilim pmuxilim = ?1 n_ckm = 11 generate cth_r 0 ,, 1 n_ckm cth_l = 0.9735 cth_ratio = cth_r/cth_l ! parameters in quadratic eqn epsi = `(m_l*m_l/(m_r*m_r))' b_manif = `(epsi)' c_manif = `(epsi*epsi + (pmuxilim - 1.)/4.)' b_nonmanif = `(epsi*rckm)' c_nonmanif = `(0.5*(epsi*rckm)**2 + 0.5*(epsi)**2 + (pmuxilim - 1.)/4.)' ! constants m_l = 80.423 lim = pmuxilim ! for non-manifest LR symmetry, with 0<=V_ud^R<=1, using cth_ratio m_low_nonmanif = m_l*sqrt(sqrt(2/(1.-lim))) m_r = [m_low_nonmanif:1500:5] display ` ' display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display `Minimum non-manifest LRS W_R mass is '//rchar(m_low_nonmanif) display `for P_mu*xi limit = '//rchar(pmuxilim) display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display ` ' zeta_upper = m_r - m_r ! start with zeros do jj=[1:n_ckm] if (exist(`zeta_save')) then destroy zeta_save zeta_save = m_r - m_r ! start with zeros rckm = cth_ratio[jj] b = eval(b_nonmanif) c = eval(c_nonmanif) determ = b*b/4. - c realroot = where(determ>1.e-10) ! note positive b/2., since rckm can be <0 and we want maximum zeta_save[realroot] = abs(-b[realroot])/2. + sqrt(determ[realroot]) !save the maximum values of zeta zeta_upper = max(zeta_upper,zeta_save) enddo m_r_rev = m_r zeta_lower = -zeta_upper sort\down m_r_rev zeta_lower massvar_nonmanif = m_r_rev//m_r zetavar_nonmanif = zeta_lower//zeta_upper destroy zeta_lower zeta_upper ! for manifest LR symmetry, with V_ud^R = V_ud^L m_low_manif = m_l*sqrt(sqrt(3/(1.-lim))) + 1.e-4 display ` ' display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display `Minimum pseudomanifest LRS W_R mass is '//rchar(m_low_manif) display `for P_mu*xi limit = '//rchar(pmuxilim) display `+++++++++++++++++++++++++++++++++++++++++++++++++++' display ` ' destroy m_r m_r = [m_low_manif:1500:5] b = eval(b_manif) c = eval(c_manif) determ = b*b/4. - c zeta_lower = -b/2. - sqrt(determ) zeta_upper = -b/2. + sqrt(determ) m_r_rev = m_r sort\down m_r_rev zeta_lower massvar_manif = m_r_rev//m_r zetavar_manif = zeta_lower//zeta_upper