
Nuclear Instruments and Methods in Physics Research A 389 (1997) 81-86
NUCLEAR

INSTRUMENTS
a METHODS
IN PHYSICS
RESEARCH

ELSEVIER
SectIon A

ROOT - An object oriented data analysis framework

Rene Bruna-*, Fons Rademakersh

TERN. Geneca. Switzerland
bNIKHEF & Hewalrtt-Packard, Geneva. Switzerland

Abstract
The ROOT system in an Object Oriented framework for large scale data analysis. ROOT written in C ++, contains,

among others, an efficient hierarchical 00 database, a C ++ interpreter. advanced statistical analysis (multi-dimen-
sional histogramming, fitting, minimization, cluster finding algorithms) and visualization tools. The user interacts with

ROOT via a graphical user interface, the command line or batch scripts. The command and scripting language is C + +
(using the interpreter) and large scripts can be compiled and dynamically linked in. The 00 database design has been
optimized for parallel access (reading as well as writing) by multiple processes.

1. Introduction

Having had many years of experience in developing
the interactive data analysis systems PAW [1] and PIAF
[2] and the simulation package GEANT [3], we realized

that the growth and maintainability of these products,
written in FORTRAN and using some 20 year old libra-
ries, had reached their limits. Although still very popular.
these systems do not scale up to the challenges offered by
the LHC. where the amount of data to be simulated and
analyzed is a few orders of magnitude larger than any-
thing seen before.

It became time to re-think our approach to large scale

data analysis and simulation and at the same time we had
to benefit from the progress made in computer science

over the past 15 to 20 years. Especially in the area of
Object Oriented design and development. Thus was born
ROOT.

We started the ROOT project in the context of the
NA49 experiment at CERN. NA49 generates an impres-
sive amount of data, about 10 terabytes of raw data per
run. This data rate is of the same order of magnitude as
the rates expected to be recorded by the LHC experi-
ments. Therefore, NA49 is an ideal environment to develop
and test the next generation data analysis tools and to
study the problems related to the organization and anal-
ysis of such large amounts of data.

* Corresponding author. Tel.: + 41 22 7672041; e-mail: rene.
brun@!cern.ch.

With ROOT we try to provide a basic framework

that offers a common set of features and tools for
domains, such as data analysis, data acquisition, event
reconstruction, detector simulation and event genera-

tion.
Currently the emphasis of ROOT is on the data analy-

sis domain but thanks to the approach of loosely coupled
object oriented frameworks the system can easily be
extended to other domains.

We believe that ROOT is an ideal environment to
introduce physicists quickly to the new world of Objects
and C++.

2. Architectural overview

The backbone of the ROOT architecture is a layered
class hierarchy with, currently, around 250 classes
grouped in about 20 frameworks divided into 9
categories. This hierarchy is organized in a mostly
single-rooted class library, that is, most of the classes
inherit from a common base class TObject. While
this organization is not very popular in C ++, it has
proven to be well suited for our needs (and indeed
for almost all successful class libraries: Java 163,
Smalltalk [7], MFC [S], BeOS [9], etc.). It enabled
the implementation of some essential infrastructure in-
herited by all descendants of TObject. However, we also
can have classes not inheriting from TObject when appro-
priate (e.g.. classes that are used as built-in types. like
TString).

Ol68-9002/97/$17.00 Copyright 11: 1997 Elsevier Science B.V. All rights JeSeJVed

PII SO168-9002(97)00048-X 11~. INTERACTIVE ANALYSIS

82 R. Brun, F. Rademakers) Nucl. lnstr. and Meth. in Ph_vs. Res. A 389 (1997) 81-86

2.1. The class categories

The basic ROOT classes contain the most low-level

building blocks of ROOT. For example, the TObject
class, which implements common behaviour for all
ROOT classes. The class TClass and its helper classes
that provide support for extended runtime type informa-
tion. The storage manager TStorage which handles all
memory allocation and de-allocation operations and

performs basic error checking (memory overwrites, etc.).
The class TFile which provides a hierachical sequential
and direct access persistant object store. The operating
system abstraction layer TSystem and the concrete

OS interfaces TUnixSystem, TWin32System and
TMacSystem concentrate all OS dependent behaviour,
like file system access, dynamic loading and interprocess
communication (IPC) for the three main platforms sup-

ported by ROOT.
The container classes provide general purpose data

structure classes like, arrays, lists, sets, B-trees, maps, etc.,
which are heavily used in the implementation of ROOT

itself.
The histogram and minimization classes offer ad-

vanced statistical data analysis features, like lD, 2D and
3D histograming of short, long, float or double values,
with fixed or variable bin sizes, profile histograms, data
fitting, formula evaluation and minimization.

The Tree and Ntuple classes contain the tree system.
The row-wise and column-wise Ntuples have been one of
the major strengths of the PAW system. Trees extend the
concept of Ntuples to all complex objects and data struc-
tures found on raw data tapes and DSTs. The idea is that
the same data model, same language, same style of que-

ries can be used on all data sets in an experiment. Trees
are designed to support not only complex objects, but
also a very large number of them in a large number of

files. Ntuples are simple trees with one branch only.
The 2D graphics classes contain the low-level graphics

primitives, like lines, arrows, rectangles, ellipses, text, etc.,
but also the higher level constructs like pads and can-
vases. They also handle basic style and attribute manage-
ment.

The 3D graphics and detector geometry classes pro-
vide basic 3D graphics primitives, like 3D polylines and
3D polymarkers as well as higher level geometrical
shapes (boxes, cones, polygons, tubes, etc.) which can be
efficiently assembled into very complex detector geometries.

The MOTIF graphical user interface classes contain
all the graphical and interactive components found in
almost every user interface toolkit, such as buttons, win-
dows, dialogs and menus. Similar classes have also been
developed for Windows/NT and Windows 95.

The interactive interface classes and C ++ interpreter
allow the construction of interactive applications in
which the user has to learn only one language, C + + , to
communicate with the program. The command lan-

guage, macro language and programming language are
all one and the same.

The documentation classes allow the creation of hy-

perized (in HTML format) C ++ header and source files,
inheritance trees, class indices, macros and session tran-
scripts. Thanks to this facility almost everything in the
ROOT system can be automatically documented and

cross-referenced.

2.2. The TObject class

Most ROOT classes are derived from TObject. TObject

defines protocols (abstract methods) for comparing ob-
jects, for object I/O, for graphics hit detection and for
notification between objects, to name the most important

ones.
The ROOT object I/O facility supports the transfer of

arbitarily complex polymorphic data structures from
memory to a ROOT file and vice versa. This functional-
ity is based on the abstract method Streamer, which is
overridden in subclasses to stream an object’s instance

variables. Circular structures are linearized, and multiple
references to the same object are restored properly. Stor-
ing pointers is implemented by an object table, which
assigns a unique identifier to each transmitted object.
This identifier can be transferred to other address spaces

or to permanent storage.
Object I/O needs some information about the type of

an object at runtime, because not only the state of an
object but also its corresponding class type has to be
transmitted. ROOT runtime support could provide
enough information about an object’s instance variables
to implement the Streamer method generically in class

TObject. However, we preferred the approach of a pro-
grammer selectively deciding which data members
should be written to disk. Data members caching some
state of an object that can easily be reconstructed in the

Streamer method do not have to be transferred to disk.
Another example is when variables can be compacted
into short words or even single bits (booleans). To aid the
programmer we provide a tool to generate automatically
a default Streamer method.

The case of encountering an unknown class while
reading back an object structure leads to the discussion
of dynamic loading and linking. To handle this case
gracefully, ROOT includes a mechanism to load a new
class and link it to a running application. This dynamic
linking support can be further used to extend a running
system. In the case of the NA49 data analysis the library
with the experiment specific classes is dynamically linked
to the running interactive ROOT program.

The object I/O facility is also used as the standard
format for transferring arbitary data structures to other
ROOT based applications running in other address
spaces or on other machines. The transparent integration
of dynamic linking into the object I/O mechanism allows

R. Bnm. F. Rudemakers / Nucl. Instr. and Meth. in Phw. Rex A 389 (1997) XI -86 83

the copying of instances of classes that are not known in tating rapid development. CINT covers about 95% of
the running application. This feature allows us to develop ANSI C and 85% of C++ CINT, written in ANSI
fairly easily advanced, web like, browsers that could C (about 70 000 lot), is solid enough to interpret itself and
operate on imported ROOT objects (for example, we let the interpreted version execute a program. CINT
could refit imported histograms without having to leave makes C/C + + programming enjoyable even for part-
the browser). time programmers.

2.3. The class dictionaryv object runtime support

Even with the upcoming runtime type identification
(RTTI) extension for C ++, the runtime system does not
provide any information about the class structure, the
instance variables or the member functions of an object.
Consequently, an additional mechanism had to be intro-

duced to gather this information, in order to support
InheritsFrom Inspect and Dump methods, the object
I/O facility and the automatic documentation system.
ROOT uses the approach of associating with each class
(via a static pointer) a special object describing its struc-
ture. These descriptors are instances of the class TClass
which is itself a subclass of TObject. TClass objects store
the following information about a class:
- the name and title of a class;

CINT is developed by Masaharu Goto who is an R&D
engineer in the mixed signal test department of the
Hachioji semiconductor test division of HP Japan.

Masaharu is working closely with the ROOT team to
integrate CINT seamlessly into ROOT and to further
optimize CINT/ROOT.

The ROOT system embeds CINT to be able to execute

C + + scripts and C + + command line input. CINT also
provides ROOT with extensive RTTI capabilities.

4. The ROOT I/O system

_ the size of an instance in bytes;
- its parent class(es);
_ the names, types and descriptions of its instance vari-

ables;
_ the names and signatures of its member functions;
- a source code reference to the definition and imple-

mentation part of the class:
_ the address of the class object factory method used to

create a new object.
Because the C++ runtime system gives no access to

type and structure information, the ROOT system uses a
dictionary generator called ROOTCINT. ROOTCINT
(a wrapper program around CINT, the C++ inter-

preter) parses the class header files and generates a dic-
tionary (in the form of a C++ function). To link the
ROOTCINT generated dictionary function to a class the
programmer only has to add two preprocessor macros to
his code. One macro. ClassDef. must be placed in the
class definition file and the other macro, ClassImp, in the
implementation file.

One of the basic pillars of the ROOT system is its

hierachical object database. The database is designed to
be particularly efficient for objects frequently manipu-
lated by physicists: histograms, ntuples. trees and events.

One could argue that this functionality can also be

provided by a full fledged commercial Object Oriented
Data Base Management System (OODBMS). We con-

sider OODBMSs as potential candidates for the replace-
ment of tools like HEPDB [4] or FATMEN [S], i.e.
when locking and concurrent writing is required. But we
do not believe that they provide a solution for the types

of objects mentioned above. Why?
~ Interactive computing is towards commodity desktop

and notebook devices. They will be heavily used for

histogram manipulation and data presentation. This
should not require a special connection to a central
data base or a license server (think of home compu-
ting).

Besides as a dictionary generator, CINT is being used
in the ROOT system as a command line interpreter and
macro processor. Thanks to CINT the ROOT system
can olIer the user a single language (C + +) interface.

3. The CINT C/C + + interpreter

- OODBMSs, by definition, are designed to store com-
plete objects. Data clustering is organized around ob-
jects and containers of objects. They are not designed
to access only a subset of the object attributes. We
have demonstrated with the PAW column-wise
Ntuples the usefulness of having access to single at-
tributes. The ROOT Tree functionality cannot be pro-

vided in an efficient way by the current OODBMSs.
- 00 data bases do not support on the fly data compres-

sion. We arc designing experiments that will generate
massive amounts of data. The cost of direct access
devices for tens of terabytes may be a dominant factor
in the cost of computing.

CINT is a C/C++ interpreter which is aimed at
processing C/C +- + scripts. Scripts are programs which
perform specific tasks. Generally execution time is not
critical. but rapid development is. Using an interpreter
the compile and link cycle is dramatically reduced facili-

~ Attribute range specification is not supported. A 4 byte
integer cannot be saved as a single byte.

~ The data bases companies are small and fragile. Will
they survive after a few years’! The technology is not
yet mature and compatibility between vendors is not
guaranteed.

11~. INTERACTIVE ANALYSIS

84 R. Brun, F. Rademakers / Nucl. Imstr. and Meth. in Ph_vs. Res. A 389 (1997) 81-86

- We prefer not to discuss the question of the cost and
the manpower resources necessary to support a com-
mercial data base.

4.1. The physical jile structure

A ROOT databse file has a file header (less than 64
bytes) followed by several logical records of variable
length. The first 4 bytes of each physical record are an

integer holding the number of bytes in the record. If the
number of bytes is negative, it identifies a deleted record
that can be reused in a subsequent write operation. The
following bytes contain all the information to uniquely

identify a data block on the file.
The TFile: :Map member function can be used to view

the contents of a file by reading sequentially all the data
blocks. The information stored by the ROOT output
functions is always in machine independent format (AS-
CII, IEEE floating point, Big Endian byte ordering). The
redundancy in the logical record header can be used in
case of the file corruption or disk errors, to rebuild the
original structure. Data in the logical records can be

compressed or uncompressed, but the logical record
header is never compressed. The first logical record on
a file always contains the description of the top level
directory of the file.

The logical records contain the following possible
data:
- File/directory information.
- A standard object as written by the TObject: :Write

function. When the Write function is called, a TKey
object is created. This TKey object is the logical record
header.

- A user buffer. In the same way as for TTree objects, the

- A TTree buffer. When a TTree buffer is written, a
TBasket object is created. TBasket is derived from
TKey and contains additional information specific to
the ‘ITree navigation logic.

user has the possibility to define a new class derived
from TKey and optimize it for his objects.

Note that the concept of record length or block size has
completely disappeared from the ROOT terminology.
This simplifies considerably the logic of the system. It
makes also simpler the implementation of memory map-
ping techniques.

4.2. The logical file structure

A ROOT file is like a Unix file system. It can contain
directories and objects with an unlimited number of
levels. Each directory has an associated list of keys, kept
in memory until the file is closed. Finding an object on
the file is done in two steps:
- Find the position of the key object using the key

name.
- Get the position of the object on the file.

ROOT objects are always written in consecutive order
on the file. By default, the directory description is written
when the TDirectory constructor is invoked. However,
if in a previous session, objects were deleted, the space
released can be used by newly created objects. In this
case, ROOT tries to find the best free block. The list of

free blocks is a list supported by the TFile object. If a free
block has a length that matches the length of the new
object, the object is written in the free block bigger than

the object used. When a file is closed, the linked list of
each directory is written to the file.

Thanks to this structure, a ROOT file can be read
sequentially in case all objects need to be processed, or
accessed randomly using the information in the TKey
object. The TTree objects use a variant of the standard
TKeys (TBasket). The TBasket keys are designed to

address randomly a large quantity of objects (TBranch
buffers) in very large files.

4.3. Support for class/schema eoolution

A ROOT file will in general be written with the same
version of a class library. However, in the life time of

a collaboration, the definition of many classes is likely to
change frequently.

The problem is made even more complicated by the
use of inheritance. Assume a class D with its base classes
C, B and A. An object of class D must be identified by the
four version numbers of its composing classes.

We have implemented in the ROOT files a versioning
mechanism that guarantees that old files can always be

read by new libraries. A likely case is the one of an
analysis program looping on many data sets generated
across the years with different class definitions.

The header files containing the class definition must
include the macro:
ClassDef (Classname, VersionID),

e.g. ClassDef (TLine, 1)
The ClassDef macro is defined in one of the main ROOT
include files which is automatically referenced by any
include file using TObject derived classes. The second
parameter of ClassDef is an integer representing the class
version number. When the file is processed by the CINT
Dictionary Generator the version information is saved in

the dictionary data structure and is later available at
execution time in the Streamer(> I/O method.

4.4. The input/output functions

An object is written to a file via the TObject: :Write ()
method. This operation consists of the following steps:
- Creation of a support TKey object in the current

directory.
~ The TKey object creates a TBuffer object.
- The TBuffer object is filled via the Streamer(>

method of a class.

R. Brun. F. Rademakers i Nucl. Instr. and Meth. in Phvs. Res. .4 389 11997) RI 86 x5

_~ If the file is compressed (default) a second buffer is

created to hold the compressed buffer.
_ Reservation of the corresponding space in the file by

looking in the TFree list of free blocks of the file.
_ The buffer is written to the file.
An object is read from the file into memory via the

TKey: :Read() method using the following sequence of
operations:
_ Search the key address by name in the current direc-

tory. The list of all the key names is contained in a

hashlist.
._ Create the buffer(s) necessary to read the object from

file.
The TKey object includes the name of the class of the
object on the file. Using the class name, the pointer to

the class definition (TClass) is obtained by looking into
the linked list of class names supported by the top level
gROOT object. The TClass: :New< > method is called.

This function invokes the default constructor of the
class.
The object’s Streamer(> member function is called.

The prototype for the Streamer(> function is auto-

matically declared by the ClassDef macro. An example
of code for the Streamerc > function is shown below
for the ROOT class TShape. This code illustrates
how the Streamer(> function deals with base classes,
including multiple inheritance. The two data members
f’Number and fMateria1 are integers. fMateria1 is
a pointer to the material definition for this shape. In

the likely case that many different shapes will reference
the same material. only one copy of the referenced
material will be written. The code for this function is
automatically generated by the CINT Dictionary

Generator.

void TShape: :Streamer (TBuffer Beb)

Stream a TShape object

if (b. IsReading{ > > 1
Version-t v = b.ReadVers(1;
TNamed: :Streamer@);
TAttLine: :Streamer@);
TAttFill: :Streamer@);
b --> f Number;
b \\ fvisibility;
b x f Material;

; else ;
b.WritVers(TShape: :IsA(> 1;
TNamed: :Streamer@);
TAttLine: :Streamer(b);
TAttFill: :Streamer(b);
b ci fNumber;
b c< fvisibility;
b c/ f Material;

/

4.5. Compression or it0 compression:2

By default, objects are compressed before being written
to a file. The ROOT compression algorithm is based on
derivatives of the well known gzip algorithm.

This algorithm supports up to 9 levels of compression.
The default compression level is 1. This level is specified
as a parameter in the TFile constructor or can be modi-
fied by the TFile: :SetCompressionLeveI(‘) function. If

the level is set to 0, no compression is done. The perfor-
mance of the compression algorithm can be seen on an
object by object basis by using the TFile: :Map(> func-
tion. Experience with this algorithm tends to indicate
a compression factor of 1.3 for raw data files and around
2 on most DSTs files.

The time to uncompress a buffer is negligible com-
pared to the compression time and is independent of the
selected compression level. A ROOT file may contain
objects written with different compression levels.

5. The ROOT Trees

For many years, the data flow model in HEP has been:
Raw Data Tapes + Data Summary Tapes -+ Mini/Micro
DSTs

The introduction of Ntuples in the PAW framework
has proven to be very successful. Many experiments are
using Ntuples as a convenient replacement for mini-
DSTs or even DSTs.

The PAW Ntuples, however, were restricted to very
simple data objects, collection of single variables or ar-

rays.
With ROOT, we are introducing a new concept that

we call Trees. Trees provide the functionality of the
Ntuples and much more. The Tree architecture extends
the concept of the Ntuple to all complex objects or data
structures found in Raw Data tapes and DSTs. The idea
is that the same data model. same language, same style of
queries can be used for all data sets in one experiment.
Trees are designed to support not only complex objects,
but also a very large number of them in a large number of

files.
In a conventional DST. all data structures of one event

were written in a contiguous area on the file. This model

has been very successful and robust for sequential files
and when the analysis program requires access to a large
number of attributes of one event. On the other hand,
this model was particularly inefficient when one had to
iterate on a subset of the events or when only a small
subset of the event attributes was used.

A Tree (class TTree) is made of branches. Each branch
(class TBranch) is described by its leaves (class TLeafl.
The leaves can be simple variables, structures, arrays or
objects. An array may be of variable length, the length
itself being a variable in the same branch or another

11~. INTERACTIL’E ANALYSIS

86 R. Brun, F. Rademakers / Nucl. Instr. and Meth. in Phys. Rex A 389 (1997) 81-86

branch. Branches will in general be objects. However, we
thought important to also support variables and struc-
tures for these applications not yet converted to C + +
and objects. A structure, for example, could be a simple
C structure or a list of variables in a Fortran common
block.

When the fruits of one branch (detector data) are ready
to be picked, they are collected into baskets (class
TBasket). When the baskets are full they go to the store,
i.e. the file.

Each branch will go to a different buffer (basket). Some
buffers will be written maybe after every event, whereas
other buffers maybe written only after a few hundred
events. The different buffers can be organized to be writ-
ten to the same file or to different files. This mechanism is
also well suited for parallel architectures. Note that this
scheme allows also insertion of a new branch at any time
in an existing file or set of files.

Due to this data clustering scheme queries can be
executed very efficiently. Queries executed on one or
more variables or objects, cause only the branch buffers
containing these variables to be read into memory.

Data are in general processed on different architec-
tures with different memory sizes. In case the analysis is
performed on a parallel architecture with a lot of mem-
ory, as many buffers as possible are kept in memory,
maybe even all buffers.

The Tree data structure allows direct access to any
event, to any branch and to any leaf even in the case of
variable length structures.

6. Further information

This paper describes only the fundamentals of the
ROOT system. More detailed and up to date information
can be found at:
http:/root.cern.ch/

Acknowledgements

The authors of this article would like to thank the
other ROOT team members, Nenad Buncic and Valery
Fine and also Masaharu Goto for his fantastic help on
the CINT/ROOT integration. Further we are grateful to
the NA49 collaboration and the Hewlett-Packard Com-
pany for their support of our work on ROOT.

References

[l] PAW Users Guide, CERN Program Library Q121.
[Z] PIAF Users Guide, CERN Program Library.
[3] GEANT Users Guide, CERN Program Library W5103.
[4] HEPDB Users Guide, CERN Program Library.
[S] FATMEN Users Guide, CERN Program Library.
[6] The Java Language Environment, J. Gosling, SUN Micro-

systems, 1995.
[7] SmallTalkbO: The Interactive programming Environment,

Adele Goldberg (Addison-Wesley, 1984).
[S] http:/www.microsoft.com/, Microsoft Corp.
[9] http:/www.be.com/, Be Inc.

