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1. Introduction

The decay of a muon into an electron and a pair of neutrinos, µ → eνµν̄e, occupies an

important role in particle physics. The measurement of the muon lifetime [1] leads to the

most accurate determination of the Fermi coupling constant, GF . The muon anomalous

magnetic moment is one of the most precisely measured quantities in nature [2, 3], and

provides important constraints on physics beyond the Standard Model (SM) [4]. Searches

for lepton flavor-violating decays of the muon, such as µ → eγ and µ → eee, constrain the

flavor sector of many SM extensions [5].

The calculations of radiative corrections to muon decay have a long and storied his-

tory [6]. The one-loop QED corrections were first performed within the Fermi theory

of weak interactions in the 1950s [7]. The cancellation of mass singular terms such as

ln(mµ/me) in the total rate, but not in distributions such as the electron energy spec-

trum, led to the development of the Kinoshita-Lee-Nauenberg theorem, which explains

how to construct “infrared-safe” observables in quantum field theory where such effects

cancel [8]. The calculation of the full one-loop corrections in the SU(2) × U(1) theory of

the electroweak interactions was one of the first such computations performed [9]. The

full two-loop corrections to the muon lifetime in the Fermi model, needed for a precision

determination of GF , were completed several years ago [10]; recently, the two-loop results

in the full electroweak theory were obtained [11].

Muon decay continues to be of interest in particle physics. The TWIST experiment at

TRIUMF [12] measures the electron energy and angular distributions in polarized muon

decay; the first results were recently reported in [13]. It is anticipated that TWIST will
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eventually measure the Michel parameters [14], which describe muon decay for the most

general form of the four-fermion interaction, to a precision of ≈ 10−4. This significantly

increases the sensitivity of muon decay to deviations arising from new physics. For example,

the lower bound on the mass of the WR in the manifest left-right symmetric model is

improved from MWR
> 400 GeV to MWR

> 800 GeV, competitive with limits coming from

the Tevatron, while the bounds on the left-right mixing parameter ζ are improved by nearly

an order of magnitude [5]. Such precision requires a careful consideration of the higher order

corrections. As noted above, the radiative corrections to quantities such as the electron

energy distribution contain large logarithms of the form ln(mµ/me), which enhances their

effect. The presence of mass singularities makes it impossible to compute the radiative

corrections to the electron energy spectrum by neglecting the mass of the electron from

the very beginning, the approximation that has been used successfully in the calculation

of QED corrections to the muon lifetime [10]. This feature makes the calculation of the

O(α2) corrections to the spectrum a challenging problem that has defied solution for many

years.

It was realized recently that the logarithmically enhanced parts of the second order

QED corrections can be computed using the factorization of mass singularities traditionally

discussed in the context of QCD. In this way, the two-loop corrections with a double loga-

rithmic enhancement, O(α2ln2(mµ/me)), were calculated in [15], and the singly-enhanced

O(α2ln(mµ/me)) terms were computed in [16]. At the midpoint of the electron energy

spectrum, the sizes of these two terms are respectively −7× 10−4 and 3× 10−4. There are

two interesting features of these results. The first is that the corrections are larger than

the anticipated experimental precision, 10−4. The second is that the single-logarithmic

terms are not a full factor of ln(mµ/me) ≈ 5 times smaller than the double-logarithmic

terms, indicating that the naive power-counting based on the size of this logarithm might

not hold. Both of these facts render a full calculation of the O(α2) corrections desirable.

In this paper we compute the O(α2) QED corrections to the electron energy spectrum

in muon decay. The full dependence on the electron mass is retained. We use a method of

performing next-to-next-to-leading-order (NNLO) calculations developed by us in a recent

series of papers [17]. Our technique features an automated extraction and numerical can-

cellation of divergences which appear as poles in the dimensional regularization parameter

ǫ = (4 − d)/2. In muon decay, ultraviolet divergences and divergences arising from soft

photon emissions appear as 1/ǫ poles, while emission of photons along the electron direc-

tion is regulated by the finite mass of the electron and leads to logarithms of the ratio of

the muon to electron mass, ln(mµ/me). From the technical point of view, the fact that the

electron mass plays the role of the collinear regulator leads to some differences as compared

to calculations with only massless particles. Having masses as regulators reduces the com-

plexity of the analytic structures which must be integrated over multi-particle phase-spaces

or over virtual loop momenta. However, issues of numerical stability appear since multi-

dimensional integrals are regulated by (me/mµ)2 ∼ 10−5. We find that the presence of a

mass regulator significantly simplifies the treatment of real emission processes of the type

µ → νµν̄ee + γγ; however, the computation of virtual corrections becomes more complex,

compared to a purely massless case. We describe these and other technical issues in detail
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in the main body of the paper.

Many other physics applications require computations of higher order corrections to

the decay spectra of massive particles. For example, the structure of the O(α2) corrections

to muon decay is identical to the O(α2
s) QCD corrections to semi-leptonic b → u and

b → c transitions, which are used to extract the CKM matrix elements |Vub| and |Vcb|,
the b-quark mass and other important parameters of Heavy Quark Effective Theory [18].

The calculation of QED radiative corrections to the electron energy spectrum discussed in

this paper can be easily extended to obtain differential results for semi-leptonic b-decays

at NNLO. In fact, some of the technical issues become simpler for b-decays, particularly

b → c. In this case, collinear singularities are regulated by the factor (mc/mb)
2 ≈ 4 ×

10−2, rather than (me/mµ)2 ≈ 10−5, leading to more stable numerics. Precise predictions

for heavy particle decay spectra will also be important for measurements at both the

LHC and a future linear collider. Both experiments will search for anomalous top quark

couplings through final-state distributions in its decay t → bW , and will determine the

CP properties of any scalar boson discovered through angular properties of such decays

as φ → ZZ,WW, ff̄ [19]. The techniques required to analyze higher-order corrections to

these decay modes are very similar to those presented here.

This paper is organized as follows. In the next section we introduce our notation and

discuss general aspects of the computation of the electron energy spectrum. In section 3

we describe our computation of the NNLO QED corrections. In section 4 we discuss our

results. Finally, we present our conclusions.

2. Notation and setup

We discuss in this section some basic notation needed to describe muon decay. We begin

with the Lagrangian

L = LQED + LF . (2.1)

LQED contains the kinetic terms for the fermions and photons, along with the QED inter-

actions,

LQED = −1

4
FµνFµν +

∑

f

ψ̄f [i 6D − mf ] ψf , (2.2)

while LF contains the Fermi interaction,

LF = −2
√

2GF

[

ψ̄νµγρPLψµ

] [

ψ̄eγρPLψνe

]

. (2.3)

Here, PL = (1− γ5)/2 is the usual left-handed projection operator. The Fermi Lagrangian

can be Fierz rearranged into the following form:

LF → −2
√

2GF

[

ψ̄eγ
ρPLψµ

] [

ψ̄νµγρPLψνe

]

. (2.4)

The QED corrections to this Lagrangian are finite to all orders in α [20] after the fermion

mass renormalization is included. Since the QED corrections do not affect the neutrino

part of this Lagrangian, and experiments do not probe properties of the neutrinos, they

can be integrated out to produce an effective µ− e current. We demonstrate this here. We
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Figure 1: A sample of LO and NLO diagrams which appear for the effective µ − e current after

the neutrinos are integrated out. The factor to be associated with the effective µ − e vertex after

squaring the matrix elements is given in eq. (2.9).

first note that since QED interactions only affect the leftmost fermion bilinear of eq. (2.4),

we can write the squared matrix element for the process µ → eνeνµ + X as

|M|2 = |Mρσ
µ→e+X |2 × Tr

[

6pνeγρ 6pνµγσPL

]

. (2.5)

Mρσ
µ→e+X denotes the matrix element formed from the leftmost bilinear of eq. (2.4) together

with any QED corrections. eq. (2.5) must be integrated over the appropriate phase-space

to obtain the electron energy spectrum:

dΓ

dx
=

∫

[dΠµ→eνν+X ]|M|2

=

∫

dp2
nt

∫

[dΠµ→epnt+X ]|Mρσ
µ→e+X |2 ×

∫

[dΠpnt→νeνµ ]Tr
[

6pνeγρ 6pνµγσPL

]

, (2.6)

where x = 2E/mµ and E is the electron energy. In the second line, we have partitioned the

phase-space so that the muon first decays into an electron, additional radiation denoted

by X, and a massive state with momentum

pnt = pµ − pe − pX . (2.7)

This massive state then decays into the muon and electron neutrinos. The neutrino portion

of the phase-space can be integrated over to obtain

∫

[dΠpnt→νeνµ ]Tr
[

6pνeγρ 6pνµγσPL

]

= T nt
ρσ, (2.8)

with

T nt
ρσ = − πp2

nt

3(2π)d−1

[

gρσ − pnt,ρpnt,σ

p2
nt

]

, (2.9)

giving the expression for the decay spectrum

dΓ

dx
=

∫

dp2
nt

∫

[dΠµ→epnt+X ]|Mρσ
µ→e+X |2T nt

ρσ. (2.10)

Since, up to an overall numerical factor, T nt
ρσ coincides with the polarization density matrix

of a vector boson with mass p2
nt, we can interpret eq. (2.10) as the emission of such a boson

in the µ−e transition. A sample of the diagrams that appear in this description are shown

in figure 1.
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Since we are regulating divergences in dimensional regularization, we briefly discuss our

treatment of the γ5 which appears in PL in eq. (2.4). Our conclusion is that a naive anti-

commuting γ5 can be used, and fermion traces containing an odd number of γ5 matrices

do not contribute. This follows from the observation that the tensor T ρσ
nt is symmetric

under ρ ↔ σ; a contribution containing an odd number of γ5 matrices will produce a form

factor containing the completely anti-symmetric Levi-Cevita tensor and will vanish when

contracted with T ρσ
nt .

We now discuss the form in which we will present our results. We parameterize the

electron energy spectrum with the variable x = 2E/mµ which lies in the range

2me

mµ
≤ x ≤ 1 +

m2
e

m2
µ

. (2.11)

We write the differential decay rate as

dΓ

dx
=

G2
F m5

µ

192π3

∑

n=0

(α

π

)n
f (n)(x). (2.12)

The LO and NLO results were computed in [7]; they can be obtained in a convenient form

in [10, 21]. The logarithmically enhanced contributions to f (2)(x) can be obtained from [15,

16]. The calculation of f (2)(x) beyond the logarithmic approximation, and including the

full dependence on the electron mass, is the main subject of this paper.

3. NNLO corrections

In this section we discuss our computation of the NNLO corrections to the electron energy

spectrum. We give a brief overview of the technical aspects of the calculation and then

describe in detail the computation of double real emission, one-loop virtual corrections to

a single photon emission, and two-loop virtual corrections.

3.1 Overview of NNLO corrections

We first present a brief overview of the various components of the NNLO corrections. The

differential decay rate contains a sum over several distinct components,

dΓ

dx
=

∑

Y

dΓY

dx
, (3.1)

where each dΓY /dx is separately divergent and must be combined with the other compo-

nents to produce a finite result. Our method of calculation follows the technique outlined

in [17]. We regulate both infrared and ultraviolet divergences in dimensional regularization,

setting the space-time dimension d = 4 − 2ǫ, and produce an expansion

dΓY

dx
=

0
∑

i=2

AY
i (pµ, pe)

ǫi
, (3.2)

where the AY
i are functions non-singular everywhere in phase-space. Since the AY

i are

non-singular, they can be computed numerically in four dimensions. The expressions for
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the dΓY /dx can be combined, and the poles in ǫ can be cancelled numerically. We must

produce such an expansion for the following components.

(i) The real radiation corrections involve decays with two additional particles radiated

into the final state. The two relevant processes are µ → eνν+γγ and µ → eνν+e+e−.

The first one begins at 1/ǫ2, with the singularities coming from the phase-space

regions where the photon energies vanish, while the second is finite. To handle these

corrections, we use the techniques presented in [17]. We describe our phase-space

parameterizations and discuss the extraction of singularities in subsection 3.2.

(ii) The real-virtual component includes the 1-loop virtual corrections to the process

µ → eνν+γ, and contributes beginning at 1/ǫ2. We use a hybrid approach combining

both analytical and numerical techniques to compute this component. We first use

integration-by-parts identities and recurrence relations [22] to reduce the corrections

to a small set of master integrals. The recurrence relations are solved using the

algorithm described in [23] and implemented in [24]. We then solve for the master

integrals numerically by applying the techniques of [17] to their Feynman parameter

representation. We discuss the details of this method, including how we handle

imaginary components of the loop integrals, in subsection 3.3.

(iii) The virtual-virtual corrections contain the interference of two-loop virtual corrections

to µ → eνν with tree-level diagrams. These begin at 1/ǫ2. We deal with these

completely numerically by applying the techniques of [17] directly to their Feynman

parameter representation. This numerical method of computing virtual corrections

was pioneered in [25, 26]. We apply it here for the first time in a fully realistic

calculation, which includes tensor integrals and several mass scales. We discuss the

details of this calculation in subsection 3.4.

(iv) We must include the square of the NLO virtual corrections, which contribute at O(α2)

and produce poles beginning at 1/ǫ2. Since the computation of this component can

be performed with standard techniques, we do not discuss it further.

(v) We must include both fermion mass renormalization, and external wave-function

renormalization. We renormalize in the on-shell scheme. The renormalization is

performed by multiplying the LO and NLO results by the factor Ze
2 × Zµ

2 , and by

inserting the muon and electron mass counterterms into the NLO diagrams. There-

fore, the mass counter-term is needed through O(α) only. For a fermion of mass m,

the renormalization constants are [27, 28]

Z2 = 1 +
∑

n=1

[

α

π

Γ(1 + e)m−2ǫ

(4π)−ǫ

]n

Z
(n)
2 ,

Z
(1)
2 = − 3

4ǫ
− 1

1 − 2ǫ
, Z

(2)
2 =

9

32ǫ2
+

51

64ǫ
+

433

128
− 3

2
ζ(3) + π2ln(2) − 13

16
π2,

δm = mbare − m = m(Zm − 1) =
α

π

Γ(1 + e)m1−2ǫ

(4π)−ǫ
Z

(1)
2 . (3.3)

– 6 –
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µ e µ e

Figure 2: Sample diagrams which contribute to µ → eνν + γγ (left) and µ → eνν + e+e− (right)

We note that contributions which arise from a closed fermion loop inserted into a

1-loop self-energy diagram, which appear at O(α2), have been removed from these

formulae; they are more naturally included in the contribution discussed in the fol-

lowing item.

(vi) Finally, we must include vacuum polarization corrections, in which a muon or elec-

tron loop is inserted into a 1-loop diagram. These include the insertion of a closed

fermion loop into a 1-loop vertex diagram, and insertions into external leg self-energy

corrections, which contribute to the muon and electron wave function renormaliza-

tion constants. These corrections form a finite subset. They can be computed using

dispersive techniques, as discussed in [31, 32], where their contribution to the muon

lifetime and electron energy spectrum are computed. Since these corrections are dis-

cussed in the literature, and can be computed with standard techniques, we do not

discuss them further.

After combining items 1−6, both ultraviolet and infrared divergences cancel, leaving a finite

result. This completes the brief summary of the terms which enter the O(α2) corrections;

we now begin the technical discussion of their computation.

3.2 Real radiation corrections

We first discuss the contribution of the real radiation processes µ → eνν + γγ and µ →
eνν + e+e−. A sample of the diagrams that contribute to these processes is shown in

figure 2. They produce a contribution to the differential decay rate of the form

dΓRR

dx
=

∫

dp2
nt

∫

[dΠµ→epnt+X ]|Mρσ
µ→e+X |2T ρσ

nt . (3.4)

In order to perform the integration in eq. (3.4), we must discuss both our phase-

space parameterizations and the singularity structure of the matrix elements. Denoting

the radiation momenta by pγ1, pγ2, pe−1, pe+2, we find the following denominators for each

process:

• µ → eνν + γγ: dγ
µ1 = (pµ − pγ1) − m2

µ, dγ
µ2, dγ

e1 = (pe + pγ1) − m2
e, dγ

e2, dγ
µ12 =

(pµ − pγ1 − pγ2) − m2
µ, dγ

e12 = (pe + pγ1 + pγ2) − m2
e;

• µ → eνν+e+e−: de
12 = (pe−1+pe+2)

2, de
e2 = (pe+pe+2)

2, de
µ12 = (pµ−pe−1−pe+2)

2−
m2

µ, de
µe2 = (pµ − pe − pe+2)

2 − m2
µ, de

e12 = (pe + pe−1 + pe+2)
2 − m2

e.

– 7 –
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We first discuss our phase-space representation for the photon radiation process, which

takes the form
∫

dp2
nt

∫

[dΠµ→epnt+X ] =
1

(2π)3d−4

∫

dsnt

∫

ddpntd
dped

dpγ1d
dpγ2 (3.5)

×δ(p2
nt−snt)δ(p

2
e−m2

e)δ(p
2
γ1)δ(p

2
γ2)δ

(d)(pµ−pe−pγ1−pγ2−pnt),

where the restriction of the electron energy fraction x is understood in the rightmost

equation. It is convenient to evaluate this in the rest frame of the muon and to choose the

z-axis along the electron direction. In this frame, the momenta are

pµ = (mµ, 0, 0, 0) , pe = (Ee, 0, 0, βEe) ,

pγ1 = (E1, E1s1, 0, E1c1) , pγ2 = (E2, E2s2cφ, E2s2sφ, E2c2) , (3.6)

where Ee, E1, and E2 denote energies, s1, s2, c1, and c2 respectively denote sines and

cosines of polar angles, and sφ, cφ denote the sine and cosine of the azimuthal angle.

Following [17], we map this to the unit hypercube, and obtain

Nγ

∫ 1

0
dλ1dλ2dλ3dλ4dλ5 κ−2+2ǫ

12 (1 + δ2 − x)4−4ǫ(1 − λ1)
3−4ǫ[βx]1−2ǫ

× [λ2(1 − λ2)]
1−2ǫ [λ3λ4(1 − λ3)(1 − λ4)]

−ǫ [λ5(1 − λ5)]
−1/2−ǫ , (3.7)

where

δ = me/mµ,

c1 = 2λ3 − 1, c2 = 2λ4 − 1, cφ = 2λ5 − 1,

Ee = x/2,

E1 =
λ2(1 − λ1)(1 + δ2 − x)

2κ1
,

E2 =
κ1(1 − λ2)(1 − λ1)(1 + δ2 − x)

2κ12
,

Nγ =
Ωd−1Ωd−2Ωd−3

27(2π)3d−4
,

Ωd =
2πd/2

Γ(d/2)
,

snt = λ1(1 + δ2 − x),

κ1 = 1 − x

2
(1 − βc1)

κ12 = κ1 −
κ1x

2
(1 − βc2) −

λ2(1 − λ1)(1 + δ2 − x)(1 − ~n1 · ~n2)

2
,

β =
√

1 − 4δ2/x2,

~n1 · ~n2 = c1c2 + s1s2cφ. (3.8)

– 8 –
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We have removed the integration over the energy fraction x, and have set the scale mµ = 1;

it can be restored with dimensional analysis. The matrix element denominators become

dγ
µ1 =

−λ2(1 − λ1)(1 + δ2 − x)

κ1
,

dγ
µ2 =

−κ1(1 − λ2)(1 − λ1)(1 + δ2 − x)

κ12
,

dγ
e1 =

xλ2(1 − λ1)(1 + δ2 − x)(1 − βc1)

2κ1
,

dγ
e2 =

xκ1(1 − λ2)(1 − λ1)(1 + δ2 − x)(1 − βc2)

2κ12
,

dγ
µ12 = −(1 − λ1)(1 + δ2 − x)

{

1 +
xλ2(1 − βc1)

2κ1
+

xκ1(1 − λ2)(1 − βc2)

2κ12

}

,

dγ
e12 = (1 − λ1)(1 + δ2 − x)

{

−1 +
λ2

κ1
+

κ1(1 − λ2)

κ12

}

. (3.9)

We note that all the divergences are produced by the overall multiplicative factors of

(1 − λ1), λ2, and (1 − λ2); the bracketed terms in dγ
µ12 and dγ

e12 are finite for values of x

away from its boundaries. In the language of [17], all singularities are factorizable; when

the denominators are combined with the phase-space in eq. (3.7), the form of eq. (3.2) can

be produced by expanding in plus distributions:

λ−1+e =
1

ǫ
δ(λ) +

∑

n=0

[

lnn(λ)

λ

]

+

ǫn

n!
,

∫ 1

0
dλ f(λ)

[

lnn(λ)

λ

]

+

=

∫ 1

0
dλ

f(λ) − f(0)

λ
lnn(λ). (3.10)

We must now discuss our phase-space representation for the process µ → eνν + e+e−,

which takes the form

∫

dp2
nt

∫

[dΠµ→epnt+X ] =
1

(2π)3d−4

∫

dsnt

∫

ddpntd
dped

dpe−1d
dpe+2 δ(p2

nt − snt) (3.11)

×δ(p2
e−m2

e)δ(p
2
e−1−m2

e)δ(p
2
e+2−m2

e)

×δ(d)(pµ−pe−pe−1−pe+2−pnt).

It is convenient to view this decay as occurring iteratively; first, the muon decays into an

electron and a massive “particle” with momentum pnt + pe−1 + pe+2. This massive particle

then decays into pe−1 and another massive particle with momentum pnt+pe+2, which finally

decays into pe+2 and the neutrino pair. This motivates the following decomposition of the

phase-space:

1

(2π)3d−4

∫

dsntdsnt12dsnt2 I1I2I3, (3.12)
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Figure 3: Sample diagrams which contribute to µ → eνν + γ

where

I1 =

∫

ddped
dpnt12 δ(p2

e − m2
e) δ(p2

nt12 − snt12) δ(d)(pµ − pe − pnt12),

I2 =

∫

ddpe−1d
dpnt2 δ(p2

e−1 − m2
e) δ(p2

nt2 − snt2) δ(d)(pnt12 − pe−1 − pnt2),

I3 =

∫

ddpe+2d
dpnt δ(p2

e+2 − m2
e) δ(p2

nt − snt) δ(d)(pnt2 − pe+2 − pnt). (3.13)

We evaluate I1, I2, and I3 in the rest frame of the massive “particle” that defines each

phase-space. Doing so yields the following expression:

Nee

∫ 1

0
dλ1dλ2dλ3dλ4dλ5

∆34

(√
1 + δ2 − x − 2δ

)2

√
snt12snt2

[

β3xE2E3

]1−2ǫ
(3.14)

× [λ3λ4(1 − λ3)(1 − λ4)]
−ǫ [λ5(1 − λ5)]

−1/2−ǫ ,

where

Nee =
Ωd−1Ωd−2Ωd−3

25+4ǫ(2π)3d−4
, E2 =

snt12 + δ2 − snt2

2
√

snt12
, E3 =

snt2 + δ2 − snt

2
√

snt2
,

snt12 = 1 + δ2 − x, snt = λ1

(

√

1 + δ2 − x − 2δ
)2

, snt2 = ∆34λ2 + L34,

∆34 = (
√

snt12 − δ)2 − (
√

snt + δ)2 , L34 = (
√

snt12 − δ)2 ,

c2 = 2λ3 − 1, c3 = 2λ4 − 1, cφ = 2λ5 − 1. (3.15)

c2 is the polar angle of pe−1 within the frame of I2, while c3 and cφ are respectively the

polar and azimuthal angles of pe+2 within I3. To obtain the invariant masses that appear in

the matrix elements, we must Lorentz transform the vectors pµ, pe, pe−1, and pe+2 between

the frames defined by the three phase-spaces. We note that all of the denominators that

appear in the matrix elements are regulated by δ, and therefore the process µ → eνν+e+e−

is finite. It is sufficient to set ǫ = 0 in eq. (3.14) and to perform the numerical integration

of the corresponding matrix element in four dimensions.

3.3 Virtual corrections to single photon emission

Here we discuss the one-loop virtual correction to the process µ → eνν + γ; some dia-

grams that must be considered are shown in figure 3. This computation is conveniently

performed by a combination of analytical and numerical methods. First, we express the
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integrals over the loop momenta through master integrals using the reduction algorithm

of [23] implemented in [24]. To give the list of master integrals, we introduce the following

notation:

DP1(a1, a2, a3, a4) =

∫

ddk

(2π)d
1

(k2 + 2pµk)a1((k + pµ − pγ)2 − m2
µ)a2(k2 + 2pek)a3k2a4

,

(3.16)

DP2(a1, a2, a3, a4) =

∫

ddk

(2π)d
1

(k2 + 2pµk)a1((k + pe + pγ)2 − m2
e)

a2(k2 + 2pek)a3k2a4
.

We find that all the Feynman integrals needed for our purposes are expressed through fifteen

master integrals that include the four-point functions DP1(1, 1, 1, 1) and DP2(1, 1, 1, 1), sev-

eral three-point functions such as DP1(0, 1, 1, 1),DP1(1, 1, 1, 0),DP2(1, 1, 0, 1) and a num-

ber of two-point functions and tadpoles. These Feynman integrals depend on the energy

of the external photon, ωγ ; when ωγ → 0, some of the master integrals develop infrared

singularities. The extraction of singularities is performed following [17]; we Feynman-

parameterize the master integrals, insert these expressions into our phase-space parame-

terization, and disentangle singularities in both the Feynman parameters and ωγ .

We write the real-virtual component of the NNLO corrections as

dΓRV

dx
=

∫

dp2
nt

∫

[dΠµ→epnt+γ ]|Mρσ
µ→e+γ |2T ρσ

nt . (3.17)

It is quite easy to construct a phase-space parameterization convenient for the extraction

of singularities; it is very similar to the double real emission case discussed in the previous

subsection. We find

∫

dp2
nt

∫

[dΠµ→epntγ ] =
Ωd−1Ωd−2

23+2ǫ(2π)2d−3

1
∫

0

dλ1dλ2λ
1−2ǫ
1 λ−ǫ

2 (1 − λ2)
−ǫFrv(x, λ1, λ2), (3.18)

where

Frv =
(E2

maxz(1 − z)β)1−2ǫ

(1 − Ee(1 − β cos θ))2−2ǫ
, (3.19)

Emax = (1 + δ2)/2, Ee = x/2, z = Ee/Emax, p2
nt = 2Emax(1 − z)(1 − λ1), and cos θ =

−1+2λ2. In terms of these variables, the scalar products of the four-momenta sab = 2pa ·pb

read

sµe = 2Ee, sµγ = 2ωγ =
2Emax(1 − z)λ1

1 − Ee(1 − β cos θ)
, seγ = 2Eeωγ(1 − β cos θ). (3.20)

From eqs. (3.18) and (3.20) we see that potential singularities associated with the soft

photon emission ωγ → 0 are factorized both in the phase-space and in the scalar products

sab; therefore, their extraction proceeds along the lines described in [17].

An additional complication related to the real-virtual corrections is that some of

the master integrals develop imaginary parts that, when the integral is Feynman-

parameterized, appear as singularities in the integration region. This feature is very

– 11 –
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inconvenient since it makes it impossible to numerically integrate even otherwise finite

expressions. We explain how we deal with this problem by considering the master integral

DP2(1, 1, 1, 1) of eq. (3.16).

We introduce a Feynman parameterization for the integral DP2(1, 1, 1, 1), and write it

as

DP2(1, 1, 1, 1) =
iΓ(2 + ǫ)

(4π)d/2

1
∫

0

dλ3

∏

i=1...3

dxiδ(1 −
3

∑

i=1

xi)
x2

φ2+ǫ
, (3.21)

where φ = −seγλ3x2 + x2
1 + (m2

e + seγλ3)x
2
2 + x1x2(sµe + λ3sµγ). Changing variables to

x2 = λ1λ2 and x1 = λ1(1 − λ2), we find

DP2(1, 1, 1, 1) =
iΓ(2 + ǫ)

(4π)d/2

1
∫

0

dλ3dλ1dλ2
λ−ǫ

1 λ2

(λ1∆ − seγλ3λ2)
2+ǫ , (3.22)

where ∆ = (1 − λ2)
2 + (m2

e + seγλ3)λ
2
2 + λ2(1 − λ2)(sµe + λ3sµγ). The denominator in

eq. (3.22) can become zero in the integration region, which makes accurate numerical

evaluation impossible even for non-exceptional values of the photon energy. To circumvent

this problem, we rewrite eq. (3.22) in the following way. First, we integrate over λ1,

producing a hypergeometric function

DP2(1, 1, 1, 1) =
iΓ(2 + ǫ)

(4π)d/2

1
∫

0

dλ3dλ2 λ2(−seγλ3λ2)
−2−ǫ Γ(1 − ǫ)

Γ(2 − ǫ)
F21 × (3.23)

×
(

2 + ǫ, 1 − ǫ; 2 − ǫ,
∆

seγλ3λ2

)

.

We now use an identity that allows us to rewrite F21(a, b, c, z) through F21(. . . , 1/z). We

obtain

DP2(1, 1, 1, 1) =
iΓ(2 + ǫ)

(4π)d/2

1
∫

0

dλ3dλ2 λ2(−seγλ3λ2)
−2−ǫ

{ −1

1 + 2ǫ

(

∆

−seγλ3λ2

)−2−ǫ

×F21

(

2 + ǫ, 1 + 2ǫ, 2 + 2ǫ,
seγλ3λ2

∆

)

(3.24)

+
Γ(1 − ǫ)Γ(1 + 2ǫ)

Γ(2 + ǫ)

(

∆

−seγλ3λ2

)−1+ǫ }

.

For the hypergeometric function that appears in eq. (3.24) we introduce a standard integral

representation and arrive at

DP2(1, 1, 1, 1) =
−iΓ(2 + ǫ)

(4π)d/2

1
∫

0

3
∏

i=1

dλi

{

λ2λ
2ǫ
1

(∆ − seγλ2λ1λ3)2+ǫ
(3.25)

+
Γ(1 − ǫ)Γ(1 + 2ǫ)

Γ(2 + ǫ)

(−seγλ3λ2)
−2ǫ

seγλ3∆1−ǫ

}

.
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Figure 4: A sample of two-loop diagrams which contribute to µ → eνν.

It is easy to see that the denominator of the first term on the right-hand side of eq. (3.25)

does not vanish inside the integration region; the imaginary part appears only from the

second term on the right-hand side of eq. (3.25), which is ∝ (−1)−2ǫ. Hence, eq. (3.25) can

be used for numerical integration after disentangling singularities in ωγ and the Feynman

parameters.

3.4 Two-loop virtual corrections

We compute the NNLO two-loop diagrams numerically. A basic ingredient of this approach

is the method of sector decomposition. In the past, this technique has been applied to scalar

loop-integrals. In this paper, we extend the approach to compute a full two-loop amplitude;

to the best of our knowledge, this is done here for the first time. The tensor integrals that

emerge in the two-loop amplitude can be expressed in terms of scalar integrals using, for

example, the procedure in [29, 30]. In principle, the latter could be computed with a brute

force application of the algorithm in [25, 26]. However, we have found that it is more

efficient to adopt a slight modification of that approach. Specifically, since the number of

Feynman diagrams we deal with is not large, we derive a Feynman integral representation

for each of the diagrams. Such representations are not unique; the ones we derive simplify

the evaluation of tensor integrals. First, we introduce a Feynman parameterization for the

propagators of one of the loop integrals. We then integrate out the corresponding loop-

momentum, and insert the result into the second loop. We carry out the remaining loop

integration with a new set of Feynman parameters, using the approach of [25, 26].

As an example, we derive the parameterization for tensor integrals in the cross-triangle

topology, which is the second diagram in figure 4. We consider the integral

X =

∫

ddk1

iπd/2

ddk2

iπd/2

{k1}m {k2}n

A1A2A3A4A5A6
, (3.26)

where

A1 = k2
1, A2 = k2

2 ,

A3 = k2
1 + 2k1 · pµ, A4 = k2

2 + 2k2 · pe,

A5 = (k1 + k2)
2 + 2 (k1 + k2) · pµ, A6 = (k1 + k2)

2 + 2 (k1 + k2) · pe, (3.27)

and p2
µ = m2

µ = 1, p2
e = m2

e. We denote a tensor of rank m in the numerator with

{k}m ≡ kµ1...µm . We first introduce Feynman parameters for the propagators in the k2

loop. We write
1

A2A4A5A6
= Γ(4)

∫ 1

0

dλ1dλ2dλ3λ3(1 − λ3)

[(k2 + q)2 − λ3(1 − λ3)Cα]4
, (3.28)

– 13 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
4

with

q = λ3k1 + η,

η = λ3 [λ1pµ + (1 − λ1)pe] + (1 − λ3)λ2pe,

Cα = k2
1 + 2k1 · ρ − η2

λ3(1 − λ3)
,

ρ = [λ1pµ + (1 − λ1 − λ2)pe] . (3.29)

We then shift the momentum k2,

k2 = K − q; (3.30)

the shift yields a sum of tensors in K with ranks i ≤ n:

{k2}n →
∑

i≤n

ci {K}i . (3.31)

It is now straightforward to integrate out the loop-momentum K, using

∫

ddK

iπd/2

{K}n

(K2 + ∆)α
= (−1)d/2 Γ

(

α − d+n
2

)

2nΓ (α)
∆

d+n
2

−αTn. (3.32)

Tn = 0 for odd n, and T0 = 1,T2 = gµ1µ2 ,T4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 , etc.

In order to perform the k1 integration we introduce a new set of Feynman parameters

λ4, λ5 and shift the momentum k1. The shift yields a new set of terms which, after the

integration, become

Xij = Γ

(

2 + 2ǫ − i + j

2

)

TiTj

∫ 1

0

(

5
∏

k=1

dλk

)

(1 − λ5)λ
1+ǫ−i/2
5 [λ3(1 − λ3)]

1+ǫ−j/2

F2+2ǫ− i+j

2

, (3.33)

with

F = λ5η
2 + λ3(1 − λ3) [pµλ4(1 − λ5) + λ5ρ]2 (3.34)

The tensor integral is now written as

X =
∑

i,j

fij (λ1, . . . , λ5; pµ, pe)Xij , (3.35)

where the terms fij are polynomials in the Feynman parameters; they are produced from

the shifts of the loop momenta. The above Feynman representation is ideal for integrating

over Feynman parameters after the sector decomposition in [25, 26] is applied. Explicit

expressions for the rather lengthy polynomials fij in eq. (3.35) are not required in order to

write down a Laurent expansion in ǫ; these functions are only used in the Fortran code where

coefficients of the ǫ expansion are evaluated. We emphasize that our parameterization is

very convenient since it allows us to treat tensor integrals on the same footing as scalar

integrals.

A technical complication arises when we consider two-loop diagrams with a self-energy

insertion on either the muon or electron line, as in figure 5. Quadratic singularities of the

form λ−2−e are produced, where λ denotes one of the Feynman parameters. We cannot
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µ e

Figure 5: A two-loop diagram with a self-energy insertion.

use the expansion of eq. (3.10) to extract these singularities as a Laurent expansion in ǫ.

This occurs because one of the propagators in such diagrams appears squared. We solve

this problem with the following procedure. As before, we start by performing one of the

loop integrations; here it is easy to integrate out the self-energy.

Let p be the momentum entering the self-energy loop and m the mass in the propagator

with momentum p. The result of the integration is

S =
(−1)−ǫΓ(1 + ǫ)

ǫ

∫ 1

0
dλ1

f(λ1)λ
−ǫ
1 (1 − λ1)

−ǫ

(

p2 − m2 − λ1m2

1−λ1

)ǫ , (3.36)

where f is the polynomial from tensor reduction. We then insert this result into the second

loop integration and obtain the following structure in the denominator

Λ =
1

(p2 − m2)2
(

p2 − m2 − λ1m2

1−λ1

)ǫ . (3.37)

A direct Feynman parameterization of Λ and sector decomposition produces quadratic

singularities. We avoid this by writing

Λ =

(

λ1m2

1−λ1

)−ǫ

(p2 − m2)2
− ǫ

∫ 1

0
dλ2

λ−1−ǫ
2

(p2 − m2)
(

p2 − m2 − λ1m2

(1−λ1)λ2

)1+ǫ (3.38)

The first term in eq. (3.38) leads to a straightforward one-loop integration, since all prop-

agators are raised to integer powers. In the second term, the offending propagator is not

raised to a quadratic power anymore. We employ a parameterization of this term following

a similar procedure as in the cross-triangle topology discussed above.

To summarize, we derive representations for the two-loop diagrams in the process

µ → eνν which (i) are amenable to sector decomposition, (ii) treat tensor and scalar

integrals on the same footing, and (iii) are free of quadratic singularities. We then produce

an ǫ-expansion of the diagrams using eq. (3.10), and finally we evaluate the coefficients of

the expansion numerically.

4. Results

In this section we give numerical results for the O(α2) corrections to the electron energy

spectrum in unpolarized muon decay. We present our results in the form of a relative
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Figure 6: The ratio of the constant NNLO coefficient relative to the tree result, δ
(2)
0 =

(α/π)2f
(2)
0 (x)/f (0)(x), versus the electron energy fraction x. The y-axis has been scaled by 104.

correction, δ(2) = (α/π)2f (2)(x)/f (0)(x), where f (0) and f (2) are respectively the LO and

NNLO coefficient functions defined in eq. (2.12). This form allows us to study the mag-

nitude of the corrections with respect to the relative experimental precision. We employ

the numerical values mµ = 105.658357 MeV and me = 0.510998902 MeV and the on-shell

value of the QED coupling constant, α = 1/137.0359895. For numerical estimates we con-

sider electron energies in the range 0.3 ≤ x ≤ 0.95, which matches the acceptance of the

TWIST experiment [12]. We have checked that integrating our result over x reproduces

the correction to the total decay rate found in [10], within numerical integration errors.

As mentioned in the Introduction, the decay spectrum contains logarithms of the form

ln(mµ/me), indicating that the electron energy is not physically observable as me → 0.

The NNLO coefficient function can be expanded as a series in this logarithm:

f (2)(x) = ln2(mµ/me) f
(2)
2 (x) + ln(mµ/me) f

(2)
1 (x) + f

(2)
0 (x). (4.1)

The f
(2)
2 (x) and f

(2)
1 (x) terms have been calculated previously in [15, 16]. The new result

of this paper is the term f
(2)
0 (x). The uncertainty associated with the impact of f

(2)
0 (x) on

the electron energy spectrum was previously estimated as ≈ 10−4, and its computation is

necessary to match the precision expected in the TWIST experiment.

The magnitude of f
(2)
0 (x) relative to the tree-level result as a function of the electron

energy fraction x is presented in figure 6. To derive f
(2)
0 , we calculate f (2) using our
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Figure 7: The ratio of the ln2, ln, and constant NNLO coefficients, as well as the total result,

relative to the tree result, δ
(2)
X = (α/π)2f

(2)
X (x)/f (0)(x), versus the electron energy fraction x. The

y-axis has been scaled by 104.

numerical program, and subtract from it the logarithmically enhanced terms given in [15,

16]. We see that for a large range of electron energies, the absolute value of f
(2)
0 (x) is

bounded by 0.5×10−4, a value somewhat smaller than the theoretical expectations [15, 16].

To estimate the remaining theoretical uncertainty on the electron spectrum, we note that

O(α3 ln3(mµ/me)) corrections to the spectrum have been computed in [33]; for moderate

values of x, the corrections are in the range of few × 10−6. The pattern of logarithmic

corrections at O(α2) indicates that the O(α3 ln2(mµ/me)) terms might have a similar size.

The hadronic correction to the electron energy spectrum considered in [32] is even smaller.

Similarly, finite W -mass effects are known, and influence the electron energy spectrum at

the level of ∼ 10−6. We take, conservatively, 5 × 10−6 as an estimate of the remaining

theoretical uncertainty for values of x away from kinematic boundaries.

An interesting feature of the electron energy spectrum is that effects of radiative cor-

rections are enhanced by large logarithms of the ratio of the muon mass over the electron

mass. The computation of the logarithmically enhanced terms in the spectrum is a much

simpler problem than the full calculation reported in this paper. Since large logarithms

are routinely exploited in theoretical physics for a simplified description, it is interesting

to gain some experience on how well this approximation works in various calculations.
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To do so, we compare the double- and single-logarithmic enhanced corrections with the

full second order QED correction to the electron energy spectrum in figure 7. We see

that the ratio of the single logarithmic term over the constant term obeys the expectation

|f (2)
1 (x)/f

(2)
0 (x)| ∼ ln(mµ/me) ≈ 5, while the ratio of the double logarithmic term over the

single logarithmic term doesn’t: |f (2)
2 (x)/f

(2)
1 (x)| < 5. Moreover, we note that the double-

logarithmic terms overestimate the full correction. Because of the cancellation between the

doubly- and singly-logarithmic enhanced terms, the relative importance of f
(2)
0 (x) increases.

For example, at x = 0.5, the constant term f
(2)
0 (x) changes the second order correction by

about 10%; this should be compared with the naive estimate 1/ ln2(mµ/me) ∼ 4%. From

this we conclude that the leading logarithmic corrections give a correct order-of-magnitude

estimate; however, the full result can deviate from the leading logarithmic approximation

by a factor of 2 − 3.

5. Conclusions

In this paper, we have presented a calculation of the O(α2) QED corrections to the electron

energy spectrum in muon decay. The NNLO QED corrections, relative to the tree level

result, are in the range −5 to 8 × 10−4, depending on the electron energy. This is larger

than the 10−4 precision expected from the TWIST experiment at TRIUMF. The corrections

contain logarithmically enhanced terms of the form ln(mµ/me), which have been calculated

previously in [15, 16]. The new result derived here is the constant term without logarithmic

enhancement, which influences the spectrum at the level of ∼ 0.5 × 10−4. The inclusion

of this correction reduces the theoretical uncertainty below the anticipated experimental

precision. We have argued the the remaining uncertainty is at the level of 5× 10−6, which

is negligible for any foreseeable experiment.

Although only the electron energy spectrum is considered in this paper, the computa-

tional method introduced is flexible enough to permit a computation of any distribution

in muon decay, with arbitrary restrictions on the kinematic variables of the electrons and

photons. The calculation reported here can therefore be extended in several ways. For the

TWIST experiment, there are two natural extensions: (1) to include polarization of the

muon, which is present in the experimental setup; (2) to also constrain the lab-frame angle

cos θ of the electron, in order to match the fiducial region used by the TWIST experiment

in their first analysis, 0.50 ≤ cos θ ≤ 0.84 [13].

There are several applications of our method beyond muon decay, where precise cal-

culations of the decay spectra of massive particles are required. Higher order corrections

to semileptonic and radiative b decays are needed for extraction of CKM matrix elements

and fundamental parameters in heavy quark physics, and in searches for new physics. De-

cay distributions of top quarks, Higgs bosons, and new massive particles will be precisely

measured at the LHC and at a future linear collider, and will be used to elucidate the un-

derlying theory describing what is discovered. We anticipate that the techniques developed

here will be useful in performing these analyses.
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