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O(azln(mu/me)) corrections to the electron energy spectrum in muon decay
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The O(azln(mﬂlme)) corrections to the electron energy spectrum in muon decay are computed using the
perturbative fragmentation function approach. The magnitude of these corrections is comparable to the antici-
pated precision of the TWIST experiment where the Michel parameters will be extracted from the measure-
ment of the electron energy spectrum in muon decay.
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. INTRODUCTION logarithmic O(In(m%/mg)) terms and it is the purpose of this
_ _ _ paper to present the calculation of those. The double-

Mu@ decay into an electron and a pair of neutrinas, |ogarithmic terms were computed recently in R&. It was
—ev, e, is a classic process in particle physics. Althoughpointed out there that the single-log_arithnmiln(nﬁ/nﬁ))
the high energy frontier has moved up from the energy scaleerms are required to match the precision of the TWIST ex-
comparable to the muon mass, precision physics of muongeriment. Motivated by these considerations, we decided to
remains an interesting and inspiring source of informatiorperform this calculation. To accomplish this, we make use of
about the standard modésM) and its possible extensions the perturbative fragmentation function approach borrowed
[1]. from QCD studies of heavy quark fragmentationetie™

Among very different experiments with the muons thatcollisions.
include the measurements of the muon anomalous magnetic
moment, the muon lifetime, the— ey branching ratio, and Il. PRELIMINARIES

the muon to electron conversion rate in muonic atoms, we According to the QCD factorization theoref@j, the dif-
focus here on the TWIST experimefi#,3], where the elec-  forential cross section for producing a particle of a given type
tron energy spectrum in muon decays will be measured tQyith 5 certain fraction of the initial energy can be written as
determine the Michel parametef,5] with a precision of 5 convolution of the hard scattering cross section computed
~10"*. To confront these measurements with the SM prey,ith massless partons and the fragmentation function that
dictions and to look for the signs of new physics, one needgjescribes the probability that a massless parton of a given
an adequately accurate calculation of the electron energype fragments to the observed physical particle in the final
spectrum within the SM. state. If we consider the process in which an energetic heavy
Calculations of the electron energy spectrum in muon dequark (i.e. mo>Aqcp) is produced and its energy is mea-
cay have a long and interesting histo_ry that dates_ back to thgred, we can identify thenassivequark with the observed
very early days of QED and the physics of weak interactiong)nysical particle in the final state. It has been shown in QCD
(see e.g. Ref6] for a historical recollection In spite of the  that in this case the perturbative fragmentation function can
tremendous progress in precision calculations@e®) ra- e defined and that this function absorbs all the terms that are
diative corrections to the muon lifetime have been compute@ingmar in the limit of the vanishing heavy quark mfs6—
only recently{ 7], and the calculation of similar corrections to 1] |t is clear that these considerations should be applicable
the electron energy spectrum has not even been attempte@.QED as well.
One reason for this is that, in contrast to the total lifetime, Applying this idea to muon decay, we can write the for-

the electron energy spectrum cannot be computed for vaniskiny|a for the electron energy spectrum in the following way:
ing electron mass since terms enhanced by the large loga-

rithm In(m, /m) are present. These terms, excluding the ones dr
that are related to the on-shell definition of the fine-structure &(Xymﬂ ,Me)
constant commonly used in QED, cancel in the total rate
rendering this calculation somewhat simpler. 1dz dfj X
At order O(«?), corrections to the electron energy spec- =j2e Lz E(z,mu ,,uf)Dj<E,,uf ,me) .
=7

trum contain double-logarithmi®©(In¥m’/mg)) and single-

Y
*On leave of absence from JINR, Dubna. Electronic addressHerez=2E/m, is the fraction of energy carried away by a
aarbuzov@phys.ualberta.ca partonj, x is the same quantity for the observed physical
"Electronic address: melnikov@slac.stanford.edu massive electrongl’ j/dz is the energy distribution of the
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massless parton of tygecomputed in the modified minimal
subtraction MS) schemeD; is the fragmentation function Pji(x, a(,uf))—
of the partorj fragmenting into the massive electron, gingd

is the factorization scale. Note that terms suppressed by the

ratio of the electron mass to the muon memg/,mi, cannot
be described by Eq(l). However, since these terms are
known, for both the Born and th®(«) corrected electron
energy spectrunil13,14], Eq. (1) is quite adequate for the
anticipated level of experimental precision.

As mentioned above, the partonic decay r(;mg/dz has
to be computed in th&1S scheme. This requirement goes
beyond the standard ultraviolet renormalization, since ;.
df /dz contains collinear singularities. These singularities €

are removed frorrdF /dz by conventional renormalization
in the MS scheme, and the associated large collinear loga- (,U«o)

(Mf) (Mf)

PP+ — | PfP00+0(a).

4

Equation(3) can be solved as a power seriesanif the
initial condition for the functionD; at the scaleu, is pro-
vided. This initial condition can be obtained from QCD stud-
ies of heavy quark fragmentatigd0]; when generalized to
QED, they imply that the fragmentation of a massless elec-
tron into a physical electron is described by

(X!/'LO!me)

_ + + 2

rithms are absorbed into the fragmentation functign =81 d1(X:120,Me) + O(a™),

The perturbative expansion for the energy distribution of
the massless partons is dy (X, o, Me)

1 df apy) -

F—d—(z,m#,,u,f)=A](O)(Z)+ oy A(l)(mﬂ,,u,f \Z) 1+x2[  ud

=d;(x)= 1 In ——-2In(1-x)—-1 . (5
— m2 .

a(py) ?

+2’7T

A](Z)(m,u,uuf ,Z), (2)

Similarly, the function that describes photon fragmentation

into physical electron is
where I'y= GZm3/(967°), A(2)=7%(3—22) 8,6, als) g

is theMS renormallzed fine structure constant, and terms of ( )
order O(«®) and higher have been neglected. TV8 fine pini '“0 2 2 2
. ) X, o,Mg) = +(1—x In—+O
structure constant will later be converted into the on-shell y (X0, Me) = ( ( ) e ().
fine structure constant~1/137.036. (6)
Before giving the explicit expressions for the coefficients

A(Y, we would like to describe a simple idea, previously As we will show in the next section, th@(a?) terms in the
used in a number of QCD studies, that allows us to computénitial conditions for the fragmentation functions are not
the azln(m /mg) enhanced terms without an explicit two- needed for our purposes since our scale chpige m, guar-
loop calculation. SmcedF /dz is computed for massless antees that no large logarithms appear in the initial condition
partons it contains two energy Sca|es the muon I'WS for D A|SO since the fragmentatlon function does not con-
and the factorization scalg. Therefore, the only loga- tain Iarge logarithms at the lowest orde(a®), the second
rithms that arise are of the form Im{/u). By choosing order coefficient mdF /dz is not needed as well. On the

ui~m,, we effectively eliminate the large logarithms from other hand, theO(«) coeff|C|ents indl’"; /dz have to be

the coefficientsA(”), and move all the large logarithms to known exactly. They are

the fragmenta'uon functiorD; . Since the fragmentation

function is process- mdependent and satisfies the Dokshltzer—

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa- A (z)= (222(22 3)'”

tion, results from previous QCD studies can be employed to

compute the large logarithmic corrections to the electron en-

ergy spectrum at orded(«?). X1In
Consider the fragmentation functidp(x, us,mg) which

describes the probability that a massless pajt@onverts

into a physical electron of mass,. This function satisfies

the DGLAP evolution equation:

2

+2+8 3,2 4
Z 32 6 Z

2
—2 | +22%(22-3)(44,— 4Liy(2)
Mt

+2Inz—3InzIn(1-2z)—In?(1-2))

5 34
+ §—22—1322+ §z3> In(1—2z)

dD; (X, us,mg) 1dz
SEELR S | py@atuny| e me). 5
dinu? T Jx =+4z-27°-67°
3 3
Here Pj; is the time-like splitting function which, to the or- <Inz+ S 532_ §22+ ZZ3 o
der we work to, can be written as 6 3 2 37
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A m2 1 5 2 PO(x)=x?+(1-x)2. (13
AD(z)=| In—% +In(1-2) (—— §+22—222+ §z3
Mg z At the next-to-leading order the time-like splitting functions
> 10 1 1 35 1 have been derived for QCD in Refsl5-18; by choosing
tlnzl == =—44z| -2+ 4+ =722 _ 78 appropriate color structures, they can be translated to QED in
z 3 z 3 12 4 a straightforward way. Since, experimentally, one will prob-

(8) ably distinguish between events with one or more electrons
in the final state, we decided to split the corresponding sec-
Having made these preliminary remarks, we can now derivend order functiorP{Y)(x) into four parts, in the same way
the fragmentation function and use it to calculate the electrogs in Ref[19]:
energy spectrum in muon decay. _
PE00) = P& 00+ P + PES) + PE™(x).
Ill. THE FRAGMENTATION FUNCTION (14)

In this section we compute the fragmentation function.HerePgﬁ’/)(x) is determined by the set of Feynman diagrams
For this purpose, we have to solve the DGLAP equat®)n  with only photonic correctioné.e. no additional electrons in
in a way consistent with the initial conditions. When solving the final state or closed electron loops in virtual correctipns
this equation perturbatively, we express the running fineP{.NS)\x) describes corrections due to non-singlet real and
structure constant in th#1S scheme in terms of the fine vyjrtualete™ pairs;p(LS)(x) contains the contribution of the

structure constant defined in the on-shell scheme, the staginglete*e™ pair ang;gléint)(x) describes the interference of

ot 2 . . ) ;

dard renormalization scheme for QED. To or@a°), the  tne singlet and the non-singlet pairs. These functions can be
well known relation between th®lS and on-shell coupling written as

constants is

(17) 3 1+x?
_ a?  u? Pee”(x)=6(1-Xx) R ZRl £ Ry
alps)=a+ gln_z' 9
Me X (2 InxIn(1—x)— 2 In’x—2Liy(1—x))
Solving Eq.(3) iteratively, we obtain 1
+ §(1+x)ln2x+ 2xInx—3x+2, (15)

a
De(X, g sMe) = 8(1 =) + 5— (LPL(X) +da(X, o, Me))

4 1\ 20 1
o \2/ 1 1 PfeléNS)(X):5(1—X)<—§é“2_ 6)‘3{ﬁ

+ E) (Lz[gpéoe)@ PE200) + 3 PE(x) '

2 1+x2| 2 22 16
1 3T x™gtgX
+ EP(;;)@ PO(X) |+ L[PQ@d;(x)
8 20
PLI(x)=(1+x)In?x+| —5—9x— —xz)lnx—8——
+P£31e)(x)] +O(a2Lo,a3), (10) e (X)=( ) 3 9%
56,
o +4x+ 9% (17)
D(X, s ,Mg) = ELPQ)(X)vLO(aZ), (12)

_ 1+x%( 3 7
whereL = In(u?/142) and the convolution operation is defined P{™(x)= 1-x (2L|2(1—x)+ > X) — 5 (1+x)Inx
in a standard way:

—7+8x, (18
1 1
A®B(x)= fo dzfO dz' 6(x—zZ)A(2)B(z") where we have used
_FdZA B 12 —i ! _
=z (2)B| -] (12) =2 o (=%
The leading order expressions for the splitting functions used x In(1-2)
in Egs.(10),(11) are Li,(X)=— jo dZT' (19
o 1+x? 0 1+(1-x)? _ , . .
PR =|=——| . PRx)=—"—, Finally, we give the explicit formulas for various convolu-
1=x], X tions which appear in Eq10):
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o o 9 radiative corrections, the non-singlet pair radiative correc-
PO ePY(x)=8(1-x) 7 46|t (6+8 tions, the singlet pair radiative corrections, and the correc-
tions due to the interference of the singlet and the non-singlet
4 pairs. With this separation, we can write the electron energy
XIn(1—x))| — mln X+ (1+x)[3Inx spectrum as
+
—4In(1-x)]=x-5, (20) i£:A(y>+A(NS)+A<S)+A(mt>_ (23)
I'y dx
PO g pO)(x)= 2(4+7x+4x2)+2(1+x)lnx, 21) We begin with the photonic corrections. Computing the con-
e ey 3x volutions, we arrive at the following result:
0 0, p(0 1o 5 « AL 0| M
POed;(x)=PQa PP (x) InF—l +8(1-x) AP =fo(x)+ 5—f100+| 5| | 510N —
e e
21 1 Ly [ T
X| 4 =883+ (7T+8L,=61In(1-x) IS0 =5 |+ |, (24)
e
8 i 2 ;
—1214(1-x)| + Inx In(1—x) vyherg ellipses represent both tO¢« ) terms W|th.out loga-
L 1=x rithmic enhancement and terms of higher order in the expan-
sion in the fine structure constant. TB&«®) energy spec-
+(1+x)[6In?(1—x)—6 InxIn(1—x) trum is given byfy(x)=x?(3—2x). The O(a) correction,
. f1(x), was calculated in Refl13]. The coefficient of the
—2Lix(1=X) —4{3]+2XInX+(7—X) double-logarithmic term is
XIn(1—x) 1.3 (22 1
n(l—x)—=—sX.
2 2 0 (x)=4x?(3—2x) E|n2x+|n2(1—x)—2 InxIn(1—x)

Using these results in Eq&L0),(11), we obtain explicit ex-

i i i 10 32
pressions for the fragmentation functioBs (X, us,me). Liy(1-X)— &y + §+8x— 16x2+ §x3)
IV. THE ELECTRON ENERGY SPECTRUM 32 11
To obtain the electron energy spectrum we have to con- ><In(1—x)+(— g X+t 8x%— §x3 Inx+ T
volute the fragmentation functions in Eq€L0),(11) with
df,—/dz. All the necessary ingredients to do that can be 17 8 , 32,
found in the previous sections. Before presenting our results + EX“L §X - 3)( ' (25

for the electron energy spectrum, we note that the depen-

dence on the factorization scale cancels explicitly in the finabnd is therefore in agreement with the recent results in Ref.

result, except for the terms that are not enhanced by anj8]. The coefficient of the single-logarithmic term for the

large logarithm and therefore beyond the scope of this papepure photonic corrections, one of the new results of this pa-
We split the final result into four pieces: the pure photonicper, is

fSE)(x) = 2x3(3— 2x) (— 2Lig(x) — 28, A X) + 2Lin(x)In(1—x) + 2Lio(x)IN x+5 Inx In?(1—x) — 5 In® In(1— x) + 2 In®x

—24,In(1—X)—2L,In X+ 7¢3)+ Liy(X) +InxIn(1—x)

10+14 40x2+92 3
3 3%

25+32x 54 2+92 3
3 T X

12 3 3 3

25 70 17 53 64
+1n?(1—x)(— 12— 4x2+8x3) +In?x ———5x+22><2—§x3

+In(1—x)< — = — =X+ = x*-12¢3

3 37 4 . 44
+Inx| — -+ —x+ x>+ —x3

211 287 83 , 559
4 6 3 9

+ o= o X X X, (26)

10 ez 9B
B AT Xt o 12X 3 T

3

Y
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where 20

N4s Ofot)
BL\ e |
x Liy(z S R e ‘
Li3(x)Ef dzﬁ, . Vel T
0 z 10 /. B st hY
-15 \
20 [ \
1 X |n2( 1 — Z) [1] 01 0.2 0.3 0.4 05 086 0.7 0.8 09 1
Slyz(X)E Efo dZT. (27 x
FIG. 1. Double and single logarithmic corrections as a function
of x.
The correction arising from non-singlet electron-positron
pairs, including the effects of the running coupling constant, 5
is fES(x)=[Li(1—x)+InxIn(1—x)] §+4x+4x2
2 2 5 17 2
ANSZ [ & }f(OvNS)(X)mZ M +In?x| 5 + 6x+4x2) +In(1—x)| =+ == +3x
20 3 2 m2 2 9 3x
e
14 8 4 5 19
2 2 3 2
+f(21,NS)(X)|n<m_’2‘)+... , 28) XX |t gta T gX T 3 X
m
¢ 1 67 .43 77, 10, =3
——— —+ =X+ =X+ —Xx°.
with 3x 9 18 18 9

Finally, for the interference term we find

X 5 8
fONS) x)=2x2(3—2x)In — tg T axtt X,

6 3 ) o 2 ) m2
29 A= | tgmoon| S| (@
me
2
f(21,NS)(X): 2x%(3— 2X)( —2Liy(1—x)— §In xIn(1—x) where
, , FEHM(x) = 2x%(3— 2x) (2Lig(1—X) — 48 A 1-X)
+3I°(1=x) = In’x— 2 5| +In(1-x) 5
—2Liy(1—x)Inx)+Liy(1—x) §+4X
10 4 46 S 4
X 3_§x—§)(2—|-12(3 +Inx §+§X 52 26
—26x2+§x3 +In2x(—9x2+§x3)
, 76, 11 19 100 , 64 ,
2
+InX| — 53— 3X—5X| -5+ 35X
(30 3 3 3 9 3
55 , 104 ,
Next, we present the result for the singlet pair correction. B ?X +TX ’ (39

Writing
V. CONCLUSIONS

By applying techniques of perturbative QCD to QED, we
have computed th®(a?) corrections to the electron energy
spectrum in unpolarized muon decay, keeping all the terms

(31) enhanced by logarithms of the muon to electron mass ratio.
’ The double logarithmi© (a?(In’m’/ng)) corrections are in

agreement with the recent results of RE8]. The single

we obtain logarithmic O(a?In(n/mg)) corrections, the new result pre-
sented in this paper, are important to match the precision
requirements of the TWIST experiment. To illustrate the sig-
nificance of the single logarithmic terms, we plot in Fig. 1
both the double and the singl@(«?) logarithmic correc-
(32 tions, defined as

a\?1 m?
A(S):(Z) [Ef?’s’(x)w(#
e

2

m
+f(21'5)(x)ln( —’2‘) +oo

m

e

2 7 14 8
f<205>(x):§+ 5 T3x- gxz— §x3+

5
§+4x+4x2) Inx,
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o.tof 1 a\1 0 1. ons that without such a calculation the intrinsic theory uncer-
& ’0)(X):m pye §f(2 M%)+ §f(z Nx) tainty in the SM prediction for the electron energy spectrum
0 cannot be pushed below a feu0 *.

—+ electron energy spectrum in muon decay is a very difficult
task and it is unclear if it is currently possible. However, it is
possible to extend our analysis to further improve on the

1 2 A complete calculation of th©(a?) corrections to the
+ = f95)(x) |In?
22 '

e

5(l,tot)(x):_(i) Z[f(l,y)(x)+f(1,NS)(X) thepry p_redic_tion. First_01_c all, b_y using the techniques de-
2 fo(X)\ 27 2 2 scribed in this paper, it is straightforward to compute the
5 electron energy spectrum in polarized muon decay. Further-

IRTEC f(l'im)(x)]ln( ﬂ) (36 More, theO(a®In*(m’/ng)) corrections can be obtained from
2 2 mZ2)’ the DGLAP equation. The resummation of corrections that

are singular in the limik— 1 can also be performed and its
As follows from Fig. 1, theO(aZIn(nfL/nﬁ)) corrections influence on the theoretical prediction for the spectrum can
computed in this paper are required for the theoretical prebe studied. These analyses, as well as a detailed discussion of
diction at the precision level I#. Moreover, within the the present theoretical uncertainty in the electron energy
acceptance region of the TWIST experiment,<0x3<0.98,  spectrum in polarized muon decay, are presented in
the magnitude of th©(a?In(m, /my)) corrections is compa- Ref. [20].
rable to the magnitude of th@(a*In(m,/my)) terms. It is
interesting to note that the double-logaritihmic and the
single-logarithmic corrections have opposite signs.

Since the leading and the sub-leading logarithmic correc- This research was supported in part by the Natural Sci-
tions tend to interfere destructively and since the sub-leadingnces and Engineering Research Council of Canada and by
corrections are larger than the precision of the TWIST exthe DOE under grant number DE-AC03-76SF00515. We are
periment, the full calculation of th®(«?) corrections to the grateful to A. Czarnecki for attracting our attention to this
electron energy spectrum becomes very desirable. It seenpsoblem and a number of useful conversations.
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