This note estimates systematic uncertainties due to variations in chamber temperature and pressure, jitter in time-zero, and inhomogeneity in B. The methodology is Garfield and Monte Carlo. It concludes that the errors are in general tolerable.
\magnification = \magstep 1 \hsize = 6.0 true in \vsize = 8.4 true in \hoffset = 0.1 true in \voffset = 1.0 true in \font\bigrm = cmr10 scaled \magstep 2 \font\bigbf = cmb10 scaled \magstep 2 \font\srm = cmr9 %\font\it = cmti10 scaled \magstep 1 \font\bigit = cmti10 scaled \magstep 2 \baselineskip = 24 true pt \parskip = 0 \baselineskip \parindent = 20 pt \def\newpage{\vfill\eject} \def\caption#1#2{ %\pageinsert %\vglue 6.8 true in $$\vbox{ \rm \hsize = 6.0 true in \baselineskip = 24 true pt \noindent {\bf #1\ \ }#2 }$$ %\endinsert } \input psfig.sty \def\Foot#1#2{ {\srm \baselineskip = 21 true pt \footnote{#1}{#2}} } \input sysabs.tex \newpage $\,$ \newpage \input systxt.tex \newpage %\input tab1_a.tex %\newpage %\input tab1_b.tex %\newpage %\input tab2_a.tex %\newpage %\input tab2_b.tex %\newpage %\input lscap.tex %\newpage \bye
\pageno = -1 %\nopagenumbers \midinsert \centerline{\bigbf Systematic Uncertainties} \vskip 0.5 true in \centerline{\bf Sun-Chong Wang} \centerline{TRIUMF, Vancouver, B.C. V6T 2A3, Canada} \centerline{Sept 3, 2001} \medskip \vskip 0.75 true in \centerline{\bf Abstract} $$ \vbox{\hsize = 4.7 true in\baselineskip = 18 true pt {\noindent %\vskip 0.5 true in This note estimates systematical errors of the ${\cal TWIST}$ spectrometer due to temperature and pressure extremes. Also discussed are errors due to jitter in time zero and inhomogeneity in $B$. It concludes that the errors are in general tolerable. } \line{\hfill $\,$ } \line{\hfill $\,$ } \line{\hfill $\,$ } \line{\hfill $\,$ } %\line{\hfill Thesis advisor: Professor H. Henry Stroke} }$$ \endinsert
\pageno = 1 %\magnification = \magstep 1 %\hsize = 6.5 true in %\vsize = 8,9 true in %\font\rm = cmr10 scaled \magstep 1 %\font\bf = cmb10 scaled \magstep 1 %\font\it = cmti10 scaled \magstep 1 %\baselineskip = 24 true pt %\parskip = 0 \baselineskip %\parindent = 20 pt %\rm \smallskip {\noindent 1. {\bf Introduction}} The E614 experiment is to measure the Michel spectrum with an unprecedented precision. The proposed accuracy of the $\cal TWIST$ spectrometer at a level of parts in $10^5$ on the Michel parameters allows one to improve current limits on the weak coupling constants within the Standard model. If, however, the result suggests deviations from Standard model prescriptions, it has the potential to shed light on directions toward models beyond the Standard model. To accomplish the goal, various systematic effects on the experimental accuracy have to be studied and thereby corrected for. This note estimates uncertainties in the Michel parameters due to changes in chamber pressure and temperature which may occur during data taking. In Section 2, measurement errors are estimated by Garfield simulations. Section 3 shows how errors propagate from spatial measurements to track parameters: $e^+$ momentum and the dip angle. Impact on the Michel parameters is shown in Section 4. Section 5 summaries. \smallskip {\noindent 2. {\bf STR's by GARFIELD}} Robert Openshaw has observed that the atmospheric pressure in the meson hall can move away from 760 torr by at most 3\% and chamber temperature from 24 by at most 10 degrees Celsius. It's known that gas properties vary as the ambient conditions change. To see the effect, we prepared the drift time-drift distance relationships of the DME gas at different pressures (or temperatures) using the Garfield. The mean, over drift distance within the cell, of the shift is calculated. Then the average, $\overline{{\rm STR}}$, of the means over angles is calculated. The results are shown in Table 1. \newpage \input tab1.tex It's noted that shifts of the curve are in one way (or the other). For example, when the pressure is lowered, the whole STR curve moves up. And, when the temperature drops, the entire STR curve moves down. All the shifts are calculated relative to the standard STR at 760 torr and 297 K. Also note that the numbers were obtained under extreme conditions. For example, $|\overline{{\rm STR}}$ @ 34C - $\overline{{\rm STR}}$ @ 24C$|$ and $|\overline{{\rm STR}}$ @ 14C - $\overline{{\rm STR}}$ @ 24C$|$ were found and then averaged to get 17.4 $\mu$m in the table. In general, effect of one extreme is very symmetrical to that of the other extreme, except that 14 C is a bit more adverse than 34 C. The next step is to relate the spatial uncertainties, $\sigma$, to the momentum and angular resolution of the spectrometer. \smallskip {\noindent 3. {\bf Energy and Angular Resolution}} If our tracking program always looks up the default STR table (at 24 C and 760 torr) for translation from tdc to the distance of closest approach, bias incurs and propagates into the determination of $e^+$ momenta and $\cos\theta$'s. The resulting Michel spectrum is distorted and the extracted Michel parameters will be off. We derive the distortion in this section. The projection of the helical trajectory on the $x-y$ is a circle, whose radius, $R$, determines the transverse momentum of the positron, $p_t$, $$ p_t = \kappa\, q\, B\, R, \eqno(1) $$ {\noindent where $\kappa = 299.792458\ ({\rm MeV}/c){\rm T}^{-1}{\rm m}^{-1}$. $q$ equals 1 for positron and the magnetic field strength $B$ is 2.2 Tesla. The track parameters in Kalman fitting has the following relations, } $$\eqalignno{ x =\ & R \cos(\phi_0+\phi)-R\cos\phi_0, & (2a) \cr y =\ & R \sin(\phi_0+\phi)-R\sin\phi_0. & (2b) \cr } $$ {\noindent Measurement uncertainties on various planes accumulate and contribute to the uncertainty in $R$, } $$\eqalignno{ {1\over \sigma_R^2} =\ & \sum_{i=1}^N \biggl[ {1\over \sigma_x^2} \Bigl({\partial x_i \over \partial R}\Bigr)^2 + {1\over \sigma_y^2}\Bigl({\partial y_i \over \partial R}\Bigr)^2 \biggr] & (3) \cr =\ & {2\over \sigma^2} \sum_{i=1}^N \Bigl[1-\cos(\phi_0+\phi_i)\cos\phi_0 -\sin(\phi_0+\phi_i)\sin\phi_0 \Bigr] \cr \approx \ & {2\over \sigma^2} \sum_{i=1}^N 1 =\ {2N\over \sigma^2}, \cr }$$ {\noindent where $N$ is the number of UV planes upstream or downstream and equal to 11 in our case. We have also assumed that the measurement error on the U plane is the same as that on the V plane: $\sigma_x = \sigma_y\equiv \sigma$. We get, } $$ \sigma_{p_t} = \kappa\, q\, B\, \sigma_R \approx {\kappa\, q\, B\, \over \sqrt{2N}} \sigma. \eqno(4) $$ We turn to the angular uncertainty for a moment. It's noted that $\theta$ is related to the dip angle, $\lambda$, by, $\theta = {\pi \over 2} - \lambda$. Furthermore, the track parameter, $t\ (=\tan\lambda)$, equals ${z\over R\phi}$. We have, using Equ (2) and similar to Equ (3), $$\eqalignno{ {1\over \sigma_t^2} =\ & \sum_{i=1}^N \biggl[ {1\over \sigma_x^2} \Bigl({\partial x_i \over \partial t}\Bigr)^2 + {1\over \sigma_y^2}\Bigl({\partial y_i \over \partial t}\Bigr)^2 \biggr] \cr \approx \ & {1\over \sigma^2 t^4} \sum_{i=1}^N z_i^2 \cr =\ & {(\Delta z)^2 \over \sigma^2 t^4} \sum_{i=1}^N i^2 \cr =\ & {(\Delta z)^2 N(N+1)(2N+1)\over \sigma^2t^4\, 6}, & (5) \cr }$$ {\noindent where again $\sigma_x=\sigma_y\equiv\sigma$ is assumed, and $\Delta z$ is the spacing between UV modules. Since they are not evenly placed in our spectrometer, we approximate an average $\Delta z$ of 0.05 m. The angular uncertainty is therefore, } $$ \sigma_\theta = \sin^2\theta\ \sigma_t = {\cos^2\theta \over \Delta z}\sqrt{6\over N(N+1)(2N+1)} \cdot\sigma \eqno(6) $$ We now return to momentum. Since $p=(p_t^2+p_z^2)^{1\over 2} = p_t(1+t^2)^{1\over 2}$, one has, ignoring the covariance between $p_t$ and $t$, $$\eqalignno{ \sigma_p =\ & \biggl[ (1+t^2)\sigma_{p_t}^2 + \biggl({t\over 1+t^2}p \biggr)^2 \sigma_t^2\biggr]^{1\over 2} \cr =\ & \biggl[ \biggl({\kappa q B \over \sin\theta}\biggr)^2 {1\over 2N} + {p^2\over (\Delta z)^2} \biggl({\cos^3\theta \over \sin\theta}\biggr)^2 {6\over N(N+1)(2N+1)}\biggr]^{1\over 2}\cdot\sigma & (7) \cr }$$ \smallskip {\noindent 4. {\bf Michel Parameters}} Pressure (or temperature) fluctuations are to smear the Michel spectrum, $$\eqalignno{ {d^2N \over dxd(\cos\theta)} = & (x^2-x_0^2)^{1\over 2} \Bigl\{ 6x(1-x) + {4\over 3}\rho (4x^2-3x-x_0^2) + 6\eta x_0(1-x) \cr + & P_\mu \xi \cos\theta (x^2-x_0^2)^{1\over 2} \bigl[ 2(1-x) + {4\over 3} \delta (4x-4+(1-x_0^2)^{1\over 2}) \bigr] \Bigr\} & (8) \cr } $$ {\noindent by, } $$\eqalignno{ E \to & \ E+G(0,\sigma_E)\ \ \ {\rm and}\cr \cos\theta \to & \ \cos\theta + G(0,\sigma_{\cos\theta}), & (9) \cr }$$ {\noindent where $G(0,\sigma)$ stands for a Gaussian distribution with mean 0 and standard deviation $\sigma$. The extent of smearing, $\sigma_E = (p/E)\sigma_p$ and $\sigma_{\cos\theta}$, are readily found in Equs. (6) and (7). } We firstly generate a Michel spectrum by sampling $10^9$ times from the distribution of Equ. (8) with $\rho = 0.75, \eta = 0, P_\mu \xi = 1,\, {\rm and}\ \delta = 0.75$. The resulting high statistics spectrum is our (perfect) data. The ranges of $x$ and $\theta$ in the sampling are $0.3 %\nopagenumbers \vskip 1.0 cm \centerline{Table 1} \vskip 0.2 cm \settabs 2 \columns \hrule \medskip \+ & $\sigma$ in $\mu$m \cr \medskip \hrule \medskip \+ temperature (24 $\pm$ 10 C) & 17.4 \cr \+ pressure (760 $\pm$ 23 torr) & 15.5 \cr \+ time zero jitter (1 $n$s) & 3.4 \cr \+ B inhomogeneity (10${}^{-4}$) &\ 0.5 \cr \medskip \hrule \medskip \vskip 0.2 cm $$ \vbox{\hsize = 5.0 true in\baselineskip = 18 true pt {\noindent Table 1: First column lists the variables changed in the Garfield simulation. Second are the resulting changes in the drift distance averaged over distances to the sense wire and over track angles (from 0 to 60 per 5 degree). The default STR is the one with DME gas at 24 C, 760 torr, and in a uniform $B$ field of 2.2 Tesla. } }$$ \vskip 1.0 cm%\nopagenumbers \vskip 1.0 cm \centerline{Table 2} \vskip 0.2 cm \settabs 3 \columns \hrule \medskip \+ parameters & best-fitted value & statistical error \cr \medskip \hrule \medskip \+ $\rho$ & 0.74996 (1.00) & $6\times 10^{-5}$ \cr \+ $\eta$ & -0.00149 (0.99) & $176\times 10^{-5}$ \cr \+ $\xi$ & 1.00005 (0.99) & $13\times 10^{-5}$ \cr \+ $\delta$ & 0.74997 (1.00) & $9\times 10^{-5}$ \cr \medskip \hrule \medskip \vskip 0.2 cm $$ \vbox{\hsize = 5.0 true in\baselineskip = 18 true pt {\noindent Table 2: $10^9$ pairs of energy and angle are generated by Monte Carlo according to the distribution of Equ. (8) given $\rho = 0.75, \eta = 0, P_\mu \xi = 1,\, {\rm and}\ \delta = 0.75$. The resulting two-dimensional histogram is fitted to Equ. (8) with now freely adjusting parameters (one at a time). The 2nd column are the re-constructed parameters, the numbers in the parenthesis being $\chi^2/{\rm NDF}$. The last column are the errors. } }$$ \vskip 1.0 cm%\nopagenumbers \vskip 1.0 cm \line{Table 3\hfil} \vskip 0.2 cm \settabs 5 \columns \hrule \medskip \+ parameters & & best-fitted value & & systematical \cr \+ & 100 $\mu$m & 20 $\mu$m & 10 $\mu$m & error \cr \medskip \hrule \medskip \+ $\rho$ & 0.74608 (19.1) & 0.74934 (2.14) & 0.74968 (1.27) & $0.5\times 10^{-5}$ \cr \+ $\eta$ & 0.10296 (19.1) & 0.01760 (2.15) & 0.00691 (1.26) & $179\times 10^{-5}$ \cr \+ $\xi$ & 0.98112 (19.0) & 0.99707 (2.14) & 0.99873 (1.28) & $17\times 10^{-5}$ \cr \+ $\delta$ & 0.74296 (18.9) & 0.74883 (2.13) & 0.74953 (1.27) & $0.7\times 10^{-5}$ \cr \medskip \hrule \medskip \vskip 0.1 cm $$ \vbox{\hsize = 5.0 true in\baselineskip = 18 true pt {\noindent Table 3: $10^9$ pairs of energy and angle are generated by Monte Carlo according to distribution Equ. (8) with $\rho = 0.75, \eta = 0, P_\mu \xi = 1,\, {\rm and}\ \delta = 0.75$. Energies and angles are then smeared according to Equ. (9) for $\sigma$ = 100, 20, 10 $\mu$m before binning. The resulting two-dimensional histogram is fitted to Equ. (8) with now freely adjusting parameters (one at a time). The 2nd, 3rd, and 4th column are the re-constructed parameters, and the last column are the {\it systematical} errors evaluated according to Equ. (10). } }$$ \vskip 1.0 cm%\nopagenumbers \vskip 1.0 cm \centerline{Table 4} \vskip 0.2 cm \settabs 6 \columns \hrule \medskip \+ source of error && $\rho$ ($\times 10^{-5}$) & $\eta$ ($\times 10^{-5}$) & $\xi$ ($\times 10^{-5}$) & $\delta$ ($\times 10^{-5}$) \cr \medskip \hrule \medskip \+ temperature $\pm$ 10 K && $\leq$ 0.5 & $\leq$ 179 & $\leq$ 17 & $\leq$ 0.7 \cr \+ pressure $\pm$ 3\% && $\leq$ 0.5 & $\leq$ 179 & $\leq$ 17 & $\leq$ 0.7 \cr \+ time zero $\pm$ 1 $n$s && $<\!\!<$ 0.5 & $<\!\!<$ 179 & $<\!\!<$ 17 & $<\!\!<$ 0.7 \cr \+ B inhomogeneity $\pm$ 10${}^{-4}$ && $<\!\!<$ 0.5 & $<\!\!<$ 179 & $<\!\!<$ 17 & $<\!\!<$ 0.7 \cr \+ statistical at $10^9$ && 6 & 176 & 13 & 9 \cr \medskip \hrule \medskip \vskip 0.1 cm $$ \vbox{\hsize = 5.0 true in\baselineskip = 18 true pt {\noindent Table 4: Estimates of errors due to fluctuations in environmental and instrumental conditions. } }$$ \vskip 1.0 cm
TN-53: systematics on temperature, pressure, time-zero, and B / Sun-Chong Wang
- Created for the The Center for Subatomic Research E614 Project Projects Page.
- Created by The CoCoBoard.