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An exact expression for the electron spectrum from the decay of unpolarized muons, including first-order
radiative corrections, was previously calculated by Kinoshita and Sirlin assuming a V—A4 theory of weak
interactions. Most results in the literature, however, have been expressed in the limit of small electron
mass, this approximation being valid if the electron’s energy is greater than about 10m,. In this paper the
exact spectrum is presented, and other approximations are used to derive simple formulas useful in the
ranges E,>3m, and E,<3m.. In the low-energy region, it is shown that the spectrum is dominated by
the emission of noninfrared photons from the electron. Our results are compared with the Michel formula,

(no radiative corrections) for E,<0.1M,.

I. INTRODUCTION

HE electron spectrum from the decay of un-
polarized muons, including lowest-order radiative
corrections, was first calculated by Behrends, Finkel-
stein, and Sirlin,* using a general parity-conserving four-
fermion interaction. They found an important correc-
tion to the basic decay spectrum developed by Michel.2
However, as was pointed out by Berman,® the formula
of BFS was inconsistent in its treatment of virtual and
real photons. To be consistent with the calculation of
virtual photon corrections, one must treat the real
photons as vector mesons of small mass. Taking this into
account, Kinoshita and Sirlin* obtained the correction
function, which, if added to the results of BFS, gives
the exact spectrum valid for all energies.

In view of the fact that all available experimental
data have been for relativistic electrons, it has been
customary to present the electron spectrum in the
approximation in which the electron mass is put equal
to zero whenever this does not cause any trouble.
However, some attempts are now being made to ac-
curately measure the whole spectrum, including the
very-low-energy range, and thus the need has arisen
to make use of the exact formula.® Since the exact
spectrum contains an enormous number of terms, most
of which are unimportant at low energies, it would be
useful to obtain an approximate formula which is
valid in this region.

The purpose of this note is to simplify the exact
spectrum by obtaining approximate formulas in the
ranges E,>3m, and E.<3m,. We note that in the non-
relativistic limit, the spectrum is dominated by the
emission of noninfrared photons from the electron. Our
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results are compared with those of Michel for 2<0.2,
where x=2E,/M ,.

II. EXACT SPECTRUM TO ORDER

The exact spectrum is obtained by adding the cor-
rection function of KS to the result of BFS. As an inde-
pendent check the complete exact spectrum was
recalculated and agreed exactly with that obtained
above.

The results are expressed in terms of the variables
%, 0, w, we defined by

coshf=E/m.=vy=M x/2m.=x/%y,,

w=In(M,/m;)=35.332,
and
w<c=In(\/m,),

where ) is a small photon mass. We assume, with very
little error, coshw=sinhw==%e“. We then obtain

P(x)du= (M ,*/1921%)x(2— x,%) 2da{ (| gv | >+ | §a| ?)
X [3— 20— (@n?/%) 14 (19412~ || D3 (@n/x) 1—x)} ,

where$
lgv.al?=|gv.a| L14(e¥/27) (av,a+ by, 4)].
The terms ay, 4 and by, 4 express the radiative correction

to the Michel formula. They are not very pleasant look-
ing functions.

0 ' 3w sinhw— 30 sinhé

sinh@ coshw— coshf4-%(coshf+1)

av,a=S+
where
S§'=(§—F1) cothf+ (1—6 cothf) (w— 2w)

¢ gv and g4 are defined with a Hamiltonian in the charge reten-

tion order (eu) (Puve).

1872



168

and?

0

2 sinhf 2 sinhf sinh}(w—6)
F1=L( )—L< )+(w~—0) 1n<—————
sinh}(w+6)

e—e” ef—e
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by,a=2D'4+[Q+ (coshw— cosh)2Y [ 3—2x— (xn2/x) F3(Xm/x) (1 — ) T wn?/x,

Q=4(8 cothf—1) sinh’w,
¥Y=(10/3)(6 cothf—1)+[(5/3) coshwF17](f/sinhd),

D'=2(0 cothf—1)(w—w<—1)+ (6 cothd) (1—In 2coshf— e~ sechf)
—+ (26 cothf+sinhw/sinhf—1) In(1—e~%¢)+4 (26 cothf—sinhw/sinhf—1) In(1—e?~)
= (coth§)[ L(e=0+)— L(e?~«)+ L(tanhf) — L(—tanh6)+3L(e~%/2 coshf) —1 L(e’/2 coshd) ].

It should be mentioned that the calculation of BFS
is done with a parity-conserving interaction, whereas
this work assumes that parity is not conserved. We do
not, however, expect any additional contributions since
we are obtaining the spectrum from unpolarized muons.

Our result is expressed in the same form as the Michel
formula, the only difference being the change from
|gv.a]| = |gv,a| caused by the radiative corrections.
As pointed out by BFS, the radiative corrections can
be considered as having perturbed the coupling con-
stants. This perturbation is energy-dependent and is
enormous in the low-energy limit.

III. APPROXIMATION E.>3m,

In the reports of BFS, Berman, and Kinoshita and
Sirlin, the electron mass was set equal to zero whenever
this did not cause a spurious divergence. This provides
accurate results for E.2>10m.. The assumption that the
electron mass is negligible is equivalent to setting
cothf=1. A somewhat better approximation, good to a
few percent down to E.=3m. is obtained by retaining
an additional term in the expansion of cothd. We set
cothf=1+1/2y2=c¢(y) and then find

OlV,A-I-bv,A: 2R’(x)+6(3—2x)‘1(1—-x) Inx
+<1—x\[c(7)(w+lnx)(5/x+ 17—34x)+34x—22]
3x / 3—20— (Xn?/2) F3(2m/x)(1—1) ’

where

5 1—x
R'(x)= c(’y)[ZL(l) — 2L(x)—|—w(§—|—2 ln——)

%
+ (3 Inx+41 ——i) In(1—x)— 2(lnx)2:|

—[2In(1—x)—Inx+w]—2.

Combining these results with P(x)dx in Sec. II we
obtain the approximate spectrum.

1IV. APPROXIMATION E,<3m,

The previous result indicates that for small x a
single term dominates the sum ay,4+bv, 4. In fact the
sum is very nearly by, 4 noninfrared (N.I.). Therefore,
we return to the exact expression for by, 4 and extract
the important term

4(8 coth6—1)~+(1—=)*((10/3)(0 coth6—1)4-[(5/3) coshw¥F17]6/sinh8}

(bv,4)v.1.22

23— 2x— (xm?/2) F3(2m/x)(1—2)]

In the interest of simplicity we have used both x and ¢
even though x and 6 are related.
When « is very close to &n

173(1—x)?
[3— 20— (xn?/%) F3(@n/2)(1—2)]

(bv,a)n1=

We notice that

lim (bV)N.I.= ©

T>Tm

TLx)=/" [(In(1—2)/t]dt is called a Spence function. For
2<1, L(x)=— 3 ,-."x"/n? A study and table of this and re-
lated functions is found in K. Mitchell, Phil. Mag. 40, 351 (1949).

and
lim (b4)n.1.=28.8(1— %) /%m=2995.

This means that the perturbation of the coupling
constants, due to the inclusion of the radiative correc-
tions, is indeed strong in the low-energy limit.

lev]* = lgv|*— o lgv|?  as 22— xn
and

leal*— 1g4]*—4.47ga|? as z—an.

The above infinity should not cause alarm because it
is exactly canceled by other terms appearing in the com-
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Fic. 1. Comparison with Michel spectrum for x<0.20,
lgv|2=gal®
S(x) (upper curve) = (1/]ga|9L(|gv|*+174]?) @ —2x—2n*/)
+(1gal2=1gv[?) Grm/x)(1—x)].
S(x) (lower curve) =2 (3 —2x—x,2/x).

plete spectrum. However, we do find, for |ga|=|gvr|,

Radiative contribution to P(x)

lim
s>zm Nonradiative contribution to P(x)

= (a/2m)(5/36)(M ./ m.)*=6.93.

The radiative corrections include a sum of terms with
u—— e+v+v and y~— e+v+v+y. After cancella-
tion of the infrared divergences, the contributions to the
corrected spectrum at low energies come from the un-
corrected spectrum of u~ — ¢ +»+47 and the radiative
decay u—— e~+v++y~.1. (NI denotes noninfrared).
The second mechanism is considerably more important
at nonrelativistic energies as indicated above.

A qualitative explanation of the importance of single-
photon emission was obtained by Kinoshita and Sirlin.
Let No(E,) and N(E,) denote the number of electrons
in some small interval about E, in the uncorrected and
corrected spectrum, respectively. Also let No(>E.) be
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the number in the uncorrected result with energy greater
than E,. If we suddenly turn on the radiative correc-
tions, most of the electrons will be unaffected. However,
if E, is small, No(>E)>Ny(E,), and, therefore, the
number of electrons which radiate sufficient energy to
bring them into NV (E,) may well exceed No(E,). In other
words, for small E,, N (E)=N(E.)+ fN.(> E.), where
f denotes the fraction of the electrons of the uncorrected
spectrum which dropped to energy E. by photon emis-
sion (noninfrared). Even though f is small, No(> E.)
can be large enough and Ne(E,) small enough so that
INo(>E)>No(E.).

The size of the radiative correction at low energies
makes one wonder whether it is necessary to include
higher-order corrections. Explicit examination of the
two-photon emission indicates that this will not be
important. This should be understandable in terms of
the argument above for single-photon emission.

V. COMPARISON WITH MICHEL FORMULA
For comparison we get | gv| =|ga| and plot, in Fig. 1,
1927°P(2)
Sx)=
M 5| gv | 2 (a2 —an?)1/?
=(1/lgv|)L1gv|*+ [24|H) B —20—xm?/x)
+(12a]*— [2v|93(@n/x)(1—x)]

as a function of « for £<0.20. This is shown along with
the Michel result which is simply obtained by replacing
|gv,4]2 by |gv.a|% We easily see the importance of the
radiative term at low energies.
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