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Abstract

We present a study of track fitting in the presence of ambiguous measurements and noise. We consider four methods for
solving the resulting assignment problem, two elastic arm algorithms and two nonlinear filters, including a novel development,
the Deterministic Annealing Filter. We describe their basic features and investigate their relationships with each other and
with other popular estimators, in particular with the EM algorithm. The performance of the methods is optimized by means
of several simulation experiments. We study the influence of the annealing schedule on the performance and show that
the application of advanced minimization methods is required in order to obtain reliable estimates of the track parameters.
We compare the relative efficiencies and the computational costs of the four methods both under ideal conditions and with
noise. A final experiment under realistic conditions focuses on the robustness of the proposed approach. © 1999 Elsevier

Science B.V. All rights reserved.

1. Introduction

Track reconstruction in the LHC experiments will
be faced by high track densities and consequently high
occupancy of the detector modules, particularly in the
inner tracking devices. In addition, there will be a con-
siderable amount of noise hits in the detector, both
random noise uncorrelated with the passage of a track,
and track correlated noise like crosstalk, delta rays,
and cluster decays. As a consequence, it is unlikely
that the track finding algorithms, which have to be
fast, will be able to resolve entirely the problem of as-
signing the detector hits to the track candidates. In our
opinion it is most likely that the final solution of this
combinatorial problem will be deferred to the track fit
which is designed to use the available information in

a statistically optimal fashion. The track fit will thus
be confronted with several competing hits at some or
even most of the layers of the tracking device. (We
assume that a track detector can be represented as a
collection of shells or layers each of which may con-
tribute one or several measurements. It is of course
possible that a track misses a layer or that a layer does
not respond although it is hit by the track.) If the de-
vice is a drift detector the problem is aggravated by
the inherent ambiguity of the measurements.

Several methods have been proposed in the litera-
ture in order to cope with this assignment problem.
They can be classified in two main classes: elastic
tracking and nonlinear filters. Elastic tracking comes
in two main varicties. The first one is inspired by
neural networks and features least-squares estimation
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of the track parameters concurrently with solving the
combinatorial assignment problem by an annealing al-
gorithm [1,2]. We will show below that this approach
is also closely related to the EM algorithm well known
in statistics [3], and in particular to a generalized ver-
sion, the EM algorithm with deterministic annealing
(DAEM), which has been proposed recently [4]. The
second variety of elastic tracking is more closely re-
lated to the Radon and the Hough transform [5]. The
estimator is neither least-squares nor maximum likeli-
hood, and we will show below that its statistical prop-
erties are clearly inferior to the least-squares estimator.

The second class comprises filters which are non-
linear extensions of the standard linear Kalman filter.
Recently it has been proposed to use the Gaussian-
sum filter (GSF, see [6]) for solving the assignment
problem concurrently with the estimation of the track
parameters [7]. It is one of the crucial features of
the GSF that prior information on the measurements
can be optimally used as long as it can be modelled
by mixtures of Gaussians. If the assignment prob-
lem is caused only by the left-right ambiguity of the
measurements, this is straightforward, and the GSF
is a competitive alternative to the elastic tracking ap-
proach. If the main source of competing hits is noise,
either electronic noise or hits from other tracks, find-
ing a suitable prior model is much more difficult, and
the GSF has to be supplemented by ad hoc assump-
tions on the frequency and the distribution of noise
hits. For this reason we have developed a related, but
more robust approach, the Deterministic Annealing
Filter (DAF). This is related to the DAEM algorithm
and also to methods used in the tracking of single and
multiple targets. It is similar to the Probabilistic Data
Association Filter (PDAF) used for multitarget track-
ing in clutter [8], but has the additional feature of an
annealing process. It can also be regarded as a simpli-
fied GSF with an additional validation feature which
eliminates hits which are not compatible with the pre-
dicted track position.

The paper is organized as follows. Section 2 re-
views the elastic tracking methods and describes fur-
ther developments required to approach statistically
optimal performance. Section 3 gives a brief sum-
mary of the Gaussian-sum filter and introduces a novel
method, the Deterministic Annealing Filter. In Sec-
tion 4 we discuss the relation of the methods with each
other and with other algorithms proposed in the rel-

evant literature, in particular with the EM algorithm.
We then proceed to study the methods on simulated
data. In Section 5 we first describe briefly the AT-
LAS transition radiation tracker (TRT) used in this
study. Then we present the results of three simulation
experiments. The first experiment concentrates on the
statistical properties of the estimators, and we mainly
report results on the precision of the various methods
and their computational cost. The second experiment
focuses on the robustness, i.e. the performance in the
presence of noise. Finally, in the third experiment we
present results from the application to track candidates
produced by the TRT track finder. The paper is con-
cluded by Section 6 containing some final remarks and
a brief outlook to further research.

2. Elastic tracking algorithms
2.1. Elastic Arms or Deformable Templates

The Elastic Arms algorithm (EAA) has been de-
veloped by Ohlsson, Peterson and Yuille [1]. The al-
gorithm aims to concurrently resolve the problem of
finding correct hit-to-track assignments together with
fitting the selected points to the respective tracks. This
is done by defining a suitable energy function, which
is basically a sum of squared distances between the
hits in the detector and the arms. Each term in the sum
is switched on or off, depending on the state of a bi-
nary hit-to-arm assignment variable. The global mini-
mum of this energy function with respect to the track
parameters and the assignment variables gives the so-
lution to the track reconstruction problem. In order to
avoid the problem of ending up in a local minimum
during the minimization procedure, one first requires
the configurations of the system to obey the Boltz-
mann distribution of statistical mechanics by invoking
a temperature parameter 7. A marginal probability dis-
tribution is then obtained by summing over all allow-
able configurations of the assignment variables, and
this in turn defines an effective energy. The strategy is
then to minimize this effective energy at successively
smaller temperatures and obtain the final results in the
limit T — 0. The effect of the annealing procedure
is to lead the search for the global minimum into the
correct region of parameter space as the temperature
gets so low that the original structure of the energy
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landscape shows up. The risk of ending up in a local
minimum in the final minimization step is thus greatly
reduced, and this is indeed a very powerful feature of
the algorithm.

The ability of the Elastic Arms algorithm to effi-
ciently resolve the problem of correct hit-to-track as-
signments has been demonstrated several times earlier.
In this paper, however, we will assume that a separate
pattern recognition procedure has been applied first.
We therefore intend to use the EAA to obtain the final
fit of the tracks, and the pattern recognition problem is
here to discern the correct track points from the mir-
ror hits and noise. The scenario is thus to optimally fit
a track to a subset of points of a track candidate, the
track candidate consisting of track points and possibly
mirror points and noise. This procedure is applied to
each track candidate independently. It has to be noted
that the standard Elastic Arms algorithm applied to a
global tracking problem is doing effectively the same
thing as the temperature gets very low. In this phase
the arms have settled in the vicinity of the tracks, and
the final fit depends only on points being very close
to the arms.

In order to obtain optimal results from the EAA
we have to slightly modify the formalism. The energy
function of Lindstrom [2] implies competition in the
final fit only between a hit and its corresponding mirror
hit. Since there may well be several hits in the same
detector layer, a more plausible solution is to let all
hits in the same layer compete in the fit. The energy
function therefore becomes

E({Sk,sik}.p) = Z [Sk (Z SikMik)
k i=1
+A<Sk—1)2], (1)

where the sum over k denotes sum over layers, ny is
the number of measurements (including mirror hits)
in layer k, and M is the squared distance from point
i in layer k to the one arm under consideration. There
is now no sum over arms, since we treat the arms
independently. The track parameters of the arm are
denoted by the vector p.

The assignment variables S and s; are either 1 or
0, and the s;; are subject to the constraint 3%, six = 1.
The S, denote whether the measurements in layer k

as a whole are assigned to the arm or not, while the
si play the same role for the individual measurements
inside the layer. For instance, Sy = 0 means that the
measurements in layer k are assigned to noise, irre-
spective of the values of the s;. The constraint on the
si tells us that only one of the points in the layer is
allowed to contribute to the energy. This constraint is
applied during the derivation of the marginal probabil-
ity density, and its effect is seen in the limit T — 0. At
nonzero temperatures, however, all possible configu-
rations are allowed. We will therefore observe that all
points in a layer are assigned to the track, each with
a probability depending on the distance from the arm
to the point and the locations of the other points.

Following the same strategy as in [2] in deriving
the marginal probability density, the effective energy
will in our case be

1 -
Ear=—4 > log (nke‘m +y e—ﬁM"*), (2)
k =1

with 8 = 1/T. From the form of the effective energy
it is clear that the “natural” temperature is T, = 202,
where ¢? is the variance of the observation error. If
there is only one measurement per layer and SA is very
large, — BEs is equal to the log-likelihood function
plus a constant, and minimizing the effective energy
at T, gives the maximum likelihood estimate of p.

As T — 0 or B — o0, the arguments of the loga-
rithm become very simple, because the term with the
largest exponent will totally dominate the sum inside
the logarithm in this limit. The energy function then
reduces to

Eg=Y min({Mi}, ), (3)
k

which is a sum of squared distances and possibly A.
The expression {M;.} denotes the set of squared dis-
tances from the points in layer & to the arm. The effect
is that for each layer only the point closest to the arm
contributes to the final fit. If all points in the layer are
further away from the arm than v/, none of the points
will contribute to the fit. The quantity v/A is seen to
define a cutoff in the sense that only points within this
distance of the arm are able to have a pull on the track.
The fit will therefore be very robust, since outliers fur-
ther away from the track than v/A have no effect on
the estimates at all.
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In earlier work several different minimization meth-
ods have been suggested. For the search direction, for
instance gradient descent [1] and use of the Hessian
matrix [2] have been proposed. To our knowledge,
however, little effort has been made in the line search
part of the minimization procedure, that is, in assessing
how far in parameter space along the search direction
one should go. In this work we use ordinary gradient
descent during the annealing, but at the final tempera-
ture we propose to use the Davidon-Fletcher-Powell
algorithm [9] to find the search direction. This algo-
rithm is an example of a quasi-Newton method and ba-
sically finds the search direction by approximating the
inverse Hessian using only the first derivatives, and no
matrix inversions are required. The line search is per-
formed by fitting a polynomial to the one-dimensional
function that arises when the energy function is evalu-
ated along the search direction, and the parameter vec-
tor at the minimum point of this polynomial is chosen
as the starting value for the next search. This proce-
dure is repeated iteratively until convergence. We will
sec later that the application of such a procedure dur-
ing the final minimization step is mandatory in order to
find the global minimum with a satisfactory accuracy.

2.2. Elastic Tracking

The Elastic Tracking algorithm (ETA) has been
proposed by Gyulassy and Harlander [5]. The basic
idea is to interpret the classical Radon transform as an
interaction energy between a template track and the
hits in the detector. The parameters of the template
track giving the minimum interaction energy define the
solution of the problem. In order to avoid local minima
of the energy function the minimization is organized as
an iterated search, similar to the annealing described
in the previous subsection.

The interaction energy Ry is defined in terms of a
sum over interactions between each hit and the track.
The interaction between each hit and the track is gov-
erned by a potential V such that

Ry(p. 1) ==Y V(My,1). (4)
k=1

The quantity p symbolizes the parameter vector, I is
the iteration number, and the sum over k is again a

sum over all layers. In [5] it was proposed to use a
Lorentzian potential of the form

w?(1)

My +w3(I) '
The quantity w(/) governs the width of the potential;
actually it is equal to the half width at half maximum.
It should be chosen quite large in the first iteration in
order to smooth out the energy surface; it is then grad-
ually lowered until the final value is reached. In [5]
it was claimed that the natural asymptotic value of w
is given by the standard deviation of the measurement
error. It can be shown, however, that this choice does
not give the best possible resolution. If there are no
mirror hits and no noise, the resolution is clearly best
for large w, because then the potential is nearly linear
in My,

V(M. 1) = (5)

W2 ~ M, ik
Maw ST
and minimizing the energy in Eq. (4) is tantamount
to a least-squares estimation. In the presence of mirror
hits and/or noise there is a dilemma. The width should
be large in order to have near-optimal performance, but
it cannot be very large because then wrong hits would
get too much weight. A good compromise between
these conflicting requirements can be expected to be at
about three to four standard deviations. We will show
in Subsection 5.2 that this simple reasoning gives a
fairly good description of the actual behaviour.

The minimization of the potential in each iteration
is usually done by a gradient descent method. We will
show that also in this case a more sophisticated min-
imization method like the Davidon-Fletcher-Powell
algorithm gives far better results.

The Lorentzian potential has the required feature
that it approaches zero as the distance between the hit
and the track increases, but it does so very slowly. This
suggests a potential problem insofar that outliers might
after all have a significant effect on the estimates. We
therefore propose to use a Gaussian potential instead,
of the form

M;
V(Mg I) = exp(——zwz(kl)) . (6)

This potential decreases much more rapidly than the
Lorentzian potential and should therefore be more ro-
bust. This situation is exactly the opposite of the one

for My < w? ,.
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encountered in least-squares or maximum likelihood
estimation, where a Gaussian model is much more
sensitive to outliers than a long-tailed one.

3. Nonlinear filters

The linear or Kalman filter is now widely used for
the estimation of the parameters (initial values) of
track candidates delivered by the track finder. It is well
known that it has a certain number of advantages over
least-squares estimation in a global linear model:

- Process noise like multiple Coulomb scattering or
energy loss can be treated locally; no long-range
correlations of the observations arise.

— The estimated state vector closely follows the actual
path of the particle; material effects can be evalu-
ated more precisely, and the quality of the linear
approximation is better.

- In combination with the smoother, optimal esti-
mates of the track parameters can be obtained at any
point along the track; this can be used for the de-
tection of outliers or the resolution of ambiguities.
Application of the Kalman filter requires that the

assignment problem has been entirely resolved by the

preceding track finder. If this is not the case, one can
envisage to run the filter on every possible assignment
and to select the “best” one, for instance in terms of
the p-value of the chi-square statistic. We will call this
approach a combinatorial Kalman filter (CKF). Apart
from being computationally expensive, we will show
below that the CKF is in general not the best solution.

In the Kalman filter, the innovations, i.e. the resid-
uals of the observations with respect to the predicted
state vector, are used only in the update of the state vec-
tor, and only in a linear fashion. If the filter is to solve
the assignment problem by giving different weights to
competing hits, the innovations have to be used in a
nonlinear fashion, both in the update of the state vec-
tor and in the update of the covariance matrix. An ex-
ample of such a nonlinear filter is the Gaussian-sum
filter (GSF) developed by Kitagawa [10,11]. The po-
tentially large computational cost of the GSF and a
certain lack of robustness have led us to the develop-
ment of a faster and more robust method which we
call the Deterministic Annealing Filter (DAF). It is
an iterated filter with the possibility of including an
annealing phase. The two filters will be described in

the following two subsections.
3.1. The Gaussian-sum filter

The Gaussian-sum filter (GSF) is a relatively
straightforward extension of the standard Kalman
filter, its main distinction being that all densities
involved are allowed to be mixtures or sums of Gaus-
sians instead of single Gaussians. The application of
the GSF to the treatment of non-Gaussian noise in
track fitting has been explored in a couple of publi-
cations [6,12]. It has been shown there that it is a
useful tool for the treatment of long-tailed measure-
ment noise and long-tailed or non-Gaussian process
noise. More recently, it has been proposed to use the
GSF for solving the assignment problem in a track
detector with ambiguities [7]. This approach can be
further generalized to cope with an arbitrary number
of competing hits in any measurement layer of the
detector.

Let x; denote the state vector at layer k, i.e. the
collection of the parameters required to specify the
track. Five parameters are required for a track fit in
space, and three for a fit in a projection. In general, the
state vector cannot be observed directly. We assume
that an observation m; in layer % is a linear function
of the state plus some measurement error,

E(Ek) =0, COV(Gk) = Vk .

(7)

Under the further assumption of €; being distributed
according to a Gaussian we can write down the obser-
vation density of m, conditional on the state

my=Hx; + €

Pm(mi|xy) = e(my; Hy xi, Vi) (8)

where ¢(x; m, V) is a multivariate Gaussian proba-
bility density function with mean vector g and covari-
ance matrix V.

The predicted distribution of the state vector x; can
be assumed to be a Gaussian sum or mixture with
Nj—) components,

Ni—y
W(xk) = Z 77‘£¢(xk; x;c|k—1’cllc|k—l) s
J=
Ni— .
Z 77"]( =1. 9)
J=1
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This is the prior distribution of the state vector xj. Us-
ing Bayes’s theorem on p,,(my|x) and 7w(x;) gives
the posterior distribution of xy,

DPm(m|xy) - m(xg)
[ Pm(mlxg) - m(xp) dxy

p(xe) = (10)

It is not difficult to show that this posterior is again a
Gaussian sum,
[/ . . i
P(x) =Y g e(Xk X Chp) » (11)
j=1
where the mean vector and the covariance matrix
{x{(I v C{Cl «} of component j is obtained by a Kalman
filter from the observation {my, V;} and the predic-
tion {¥4e—1> Cra_1} [6]. The posterior weights are
given by

qi o« mo(my; Hexly_,, Ve + HCly_ \H) . (12)

The constant of proportionality is determined by the
requirement that the sum of all g;, is equal to 1.

If there are several, say ny, competing observations
mf( in layer k, we can form n; hypotheses H;, where
H; asserts that mi, is the observation to be assigned to
the track. A priori all H; are equally likely,

pi=P(H)=1/ng, i=1,...,m. (13)
The posterior density of x, conditional on H; is then
equal to
Nk_l N .s ¥
p(x¢|H;) = qulc‘f’(xk3x;cj|k’clkj|k) . (14)
j=1
where the mean vector and the covariance matrix
{x’k’I " C','c’l .} of component j i§ obtained by a Kalman
filter from the observation {m, V¢} and the prediction
{xf(I 1’ C§c| 2 Einally the total posterior density is
obtained by summing over all hypotheses,

p(xi) = p(x|H) - P(H)

i=1
ne Ni—t

=" pigl e(xi 5, Ch) - (15)

=1 j=1

This posterior is then propagated to the next layer and
used again as the prior in the next filter step. At the

end of the track, the final estimate x,, and its co-
variance matrix Cp, are obtained as the mean and the
covariance matrix of the posterior distribution p(x,).

If there are competing measurements in most of the
layers, the number of components in the mixture dis-
tribution of the state vector rises very quickly. This
is particularly serious in the initial phase of the filter
during which the information is not sufficient to select
the correct assignments. In subsequent steps the com-
ponents corresponding to wrong solutions get small
posterior weights and can be suppressed.

Apart from its potentially high computational com-
plexity the GSF has another serious shortcoming: there
is no built-in protection against wrong hits which have
no competing good hit. In the GSF a single hit in a
layer always gets a posterior weight equal to one, i.e. it
is always used with its full weight. This is particularly
damaging in the initial phase where there is no way
of detecting such wrong hits. This problem has been
solved in [7] by modeling suspicious hits by a mix-
ture of two Gaussians. The first Gaussian has a vari-
ance corresponding to the observation error and repre-
sents the hypothesis that the hit is correct; the second
one has a larger width and represents the hypothesis
that the hit is wrong. Apart from this approach be-
ing rather ad hoc, it is not clear how the width of the
second component and its mixture weight can be reli-
ably determined. There is a solution which is entirely
in the spirit of the GSF, by allowing in each layer the
additional hypothesis that no hit is associated with the
track. However, there still is the difficulty in determin-
ing the prior probability of this hypothesis, and the
additional hypothesis results in a further increase of
the computational cost.

3.2. The Deterministic Annealing Filter

The obvious way of guarding against wrong hits is
a selection procedure based on the innovations, i.e.
the predicted residuals of the hits. The problem of in-
sufficient information in the initial phase of the filter
can be overcome by adopting an iterative procedure.
After a first pass of filter plus smoother the track posi-
tion can be predicted in every layer, using information
from all the other layers. Based on these predictions,
the assignment probabilities of all competing hits can
be computed in every layer. If this probability falls
below a certain threshold, the hit is suppressed during
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the next iteration. (It is, however, not excluded that the
hit is used again in a later iteration.) The assignment
probabilities of the remaining hits are normalized to 1
and used as the weights in the next iteration of the fil-
ter. If all hits are eliminated the sum of the assignment
probabilities is equal to zero and no normalization is
possible. This requires some modification of the filter
update formulas, effectively allowing the weights to
sum to any number in the interval [0, 1].

The filter itself is a Kalman filter with reweighted
observations. The propagation part is identical to the
standard case and therefore much faster than with the
GSF,; the prescription for the update of the state vector
at layer k is a Kalman filter with prediction xy;_; and
observations {m',i = 1,...,n}. If pj is the assign-
ment probability of observation m}, its weight matrix
is p.V!. This leads to the following update of the
state vector:

I3

X =Xyi—1 + Ki Y pi(ml — Hexg—r) . (16)

=]

K, is the Kalman gain matrix, which has to be written
in terms of inverse covariance or weight matrices if
we want to allow for zero weights,

Ki= (Cip_y + pH{V,  HO T HIV (17)

where p; is the sum over all weights p.. As in the
standard Kalman filter, the covariance matrix Cy; of
the updated estimate x; is given by the first factor
of the gain matrix,

Cup = (Cigpemy + PRV HY ™ (18)

This updating procedure is correct when the weights
are considered as constants. We will see in the next
section that this assumption can be theoretically justi-
fied.

After completion of the filter a second filter, called
the backward filter, is run in the opposite direction,
using the same weights as the forward filter. By taking
a weighted mean of the predictions of both filters at
every layer, we obtain a prediction len using all hits
except the ones at layer k, along with its covariance
matrix Cj,. (The asterisk indicates that the informa-
tion from layer £ is not used in this prediction.) Based
on this prediction and its covariance matrix, the as-
signment probabilities of the hits are then computed
in the following way:

pi < @(mj; Hixyy,, Vi + HCy, HY) . (19)

The assignment probabilities exceeding the threshold
are normalized to 1 and used again as weights in the
next iteration, and so on. The iteration is stopped when
the assignment probabilities settle to their final value.
An even simpler formula for the assignment probabil-
ities can be obtained if the covariance matrix C}y, of
the smoothed estimate is neglected in Eq. (19). Again
it will be shown in the next section that this procedure
has a theoretical basis.

It is not excluded that the final assignment proba-
bilities, and consequently the final estimate, depend
on the starting value of the iteration. In order to avoid
this we propose to apply an annealing procedure very
similar to the one described in Subsection 2.2. This
means that the variances V; of the observations now
depend on the iteration number /. If we start with val-
ues Vi (1) well above the nominal variance of the ob-
servation error, the assignment probabilities after the
first iteration will be close to 1/n,, ensuring that no hit
is prematurely excluded from the filter. The variance
is then gradually lowered, until the nominal value is
attained. Finally, a few iterations at the nominal value
are required so that the assignment probabilities can
settle to their final value. If one is sure that the start-
ing value of the iteration is close to the true track,
the annealing can be dispensed with, and only a few
iterations at the nominal variance are necessary. If,
for instance, the starting value of the iteration is de-
termined by an estimator with high break-down point
such as the LMS estimator [ 13], it is guaranteed that
the initial track is close to the majority of the hits, and
annealing is very likely unnecessary.

It should be noted that this procedure results in a
“soft” or “fuzzy” assignment of the hits to the track
candidate. It may be tempting to continue the anneal-
ing in order to force the assignment probabilities to
values very close to 0 or 1, in other words to obtain
a “hard” assignment. In this case the filter formulas
(Egs. (16)-(18)) approach the standard Kalman fil-
ter formulas. We will, however, show below that noth-
ing is gained by this.
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V(x)

5

Fig. 1. The potential V as a function of distance x, expressed
in standard deviations of the measurement error. The cut v/A is
set at three standard deviations. (a) EAA at 7 = 0. Note the
abrupt change in the potential’s behaviour at |x} = 3. (b) EAA
at T = 20%. This temperature corresponds to the width of the
measurement error. (¢) The Gaussian potential of the ETA with
the same curvature at x = 0. (d) The Lorentzian potential of the
ETA with the same curvature at x = 0.

4. Discussion of the methods

4.1. Comparison between different elastic tracking
algorithms

If there is only one measurement in each layer, the
energy function of the Elastic Arms algorithm (EAA)
can be interpreted in terms of a potential, in the same
spirit as for the Elastic Tracking algorithm (ETA). In
the 7" — O limit, the potential for the EAA is defined
by

My, ifMik <A,

V(My) = { A, otherwise . 29

This follows directly from the zero-temperature ex-
pression of the energy function given in Eq. (3). The
potential rises quadratically as a function of distance
until it reaches the cutoff v/A, and then it abruptly
flattens out. For low but nonzero temperatures the po-
tential is slightly modified around the cutoff region.
Fig. 1 shows the potential of the EAA at two tempera-
tures: (a) at 7 =0 and (b) at the natural temperature
T, = 202, where ¢? is the variance of the measure-
ment error.

The quadratic form of the potential clearly shows
us that the EAA is doing a least-squares fit at very low
temperatures. This is not the case for the ETA. The

Lorentzian and the Gaussian potential are plotted in
Fig. 1c and d. We have chosen the width w of the po-
tentials such that the curvature at x = 0 is equal to the
curvature of the quadratic potential of the EAA (a).
Since this gives locally the best approximation to the
quadratic potential it is reasonable to assume that this
choice of w gives the best precision. This implies that
the final width of the Lorentzian should be equal to
the desired cutoff v/A, while for the Gaussian it should
be equal to the cutoff divided by v/2. In the follow-
ing section we will compare this rule-of-thumb with
simulation results. Fig. 1 also shows that the Gaus-
sian potential is a better global approximation to the
EAA potential than the Lorentzian. It can therefore be
expected that the Gaussian gives better results.

For the case of more than one measurement in a
layer the EAA and the ETA clearly differ. The EAA is,
as T — 0, still doing a least-squares fit including only
the measurement nearest to the arm. The other mea-
surements in the same layer are not participating in
the fit. The ETA, however, does not have any compe-
tition between the different hits in the same layer. The
pull which each hit has on the track is not affected by
the positions of the other measurements. Since there
is rarely more than one hit per layer originating from
the track to be fitted, the fitting algorithm should try
to select the correct hit, include it in the fit and discard
the rest of the hits. This behaviour is implicit in the
EAA algorithm. One can therefore expect the ETA es-
timates to be influenced more strongly by mirror hits
and noise than the EAA estimates. The results of the
subsequent section will show that this is indeed the
case.

4.2. Relations between Elastic Arms and Filters

It has been noted earlier [ 1] that the EM algorithm
is an alternative way of performing the minimization
of the energy in the EAA algorithm. This is because
under the assumption of Gaussian observation errors
the maximum likelihood estimate coincides with the
least-squares estimate. In fact, the convergence theo-
rem by Dempster, Laird and Rubin [3] guarantees that
the EM algorithm will minimize the effective energy
(Eq. (2)). Each iteration of the EM algorithm can be
divided into two major steps: an expectation step and
a minimization step. The expectation step calculates
the average of the original energy function (Eq. (1))
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over the assignment variables, conditional on the cur-
rent value p’ of the track parameters . This expectation
defines the function

oplp) = > E({Sesuc}»p) - P({St, su}|P")
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P S » Si s /
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where the sum over {S, si} means sum over all al-
lowable configurations and Py (p’) is the marginal
probability density function. The prime on the param-
eter vector emphasizes the fact that p’ is a fixed quan-
tity, namely the current estimate of the parameters,
whereas p is variable. By writing out the energy func-
tion and the probabilities explicitely one can perform
the summation. The result is
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where the primed quantities again refer to an arm with
parameter vector p’. The p}, is to be interpreted as the
probability that the hit i in layer k is assigned to the
arm, while pg, defines the probability that none of the
measurements is assigned to the arm. The minimiza-
tion step is then to minimize the Q function with re-
spect to the parameters p. Since the last term in the
above expression is independent of p, we will obtain
exactly the same result if we minimize

0 (plP') =D Mupj, (23)
kK i=l

with respect to p. The new value of the parameter vec-
tor is used to update the probabilities, and the Q func-
tion is again minimized. This procedure is repeated
until convergence. We see that the EM algorithm in
this case is nothing but an iteratively reweighted least-
squares procedure, and the weights are given by the
assignment probabilities.
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Fig. 2. The association probability of a single hit as a function
of its distance from the predicted track position, measured in
standard deviations of the measurement error. The step function
is used by the DAF, the continuous function is used by the EAA

at B =1/2V;. The cut is set at four standard deviations.

If there is nonnegligible process noise, for instance
multiple Coulomb scattering in the detector material,
it is of advantage to replace the global least-squares
fit by a filter plus smoother (see Section 3). The main
reason is that the initial track parameters p do not
capture any longer the entire information about the
trajectory: the smoothed estimate at a given layer k is
a better estimate of the track parameters at layer k than
the extrapolation of the initial track parameters to layer
k. The M step now consists of a pass of the filter and
of the smoother, the measurements being weighted by
the p;; determined in the previous iteration. In the E
step the weights are recalculated, using the distance
of the hits from the smoothed track parameters. The
natural scale of 8 is 8 = 1/(2V), where V; is the error
variance of the observation which here is assumed to
be one-dimensional (see Eq. (7)). Using this value of
B one arrives at a procedure which is almost identical
to the DAF described in Subsection 3.2; merely the
weights are slightly different. If there is only a single
measurement in layer k, the weight used by the DAF
is equal to 1 if it is above the threshold, and equal to
0 if it is below the threshold, resulting in a “hard” cut.
With the EAA, the weight is a continuous function of
the distance between the measurement and the track
position, resulting in a “soft” cut even if there is no
competition, At the position of the cut the weight is
equal to 0.5. This is illustrated in Fig. 2.

In general, the weights in the EAA do not add up to
1, because for every measurement there is a nonzero
probability that it is not the correct one, even if it is
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very close to the track. If there are several competing
measurements in a layer, and if one of them is reason-
ably close to the track, the weights of the EAA and of
the DAF are virtually indistinguishable. It is of course
perfectly possible to run the DAF with the weights as
computed by the EAA, and this is what has actually
been done in the simulation experiments described in
the next section.

If multiple scattering is not negligible it is perfectly
straightforward to incorporate it into the DAF (or into
the GSF), whereas it is not obvious how to do this in
the energy function of the EAA. In this case we there-
fore recommend using the filter rather than the EAA.
Otherwise it is largely a matter of choice, although
we will show below that a sophisticated and therefore
time-consuming minimization method is required if
the EAA is to deliver the best possible precision. In
the absence of process noise the iterated reweighted
least-squares estimate is the fastest approach.

Both the EAA and the DAF offer the possibility of
an annealing phase, in order to overcome the problem
of ending up in a local minimum of the energy func-
tion or LS objective function. A version of the EM
algorithm with deterministic annealing has been pro-
posed recently [4]. It is easy to see that this algorithm
is exactly the same as the EAA and the DAF with an-
nealing. It should be noted that it is not necessary to
actually find the minimum of the energy function or
of the LS objective function at every value of B: in
our implementation of the EAA only a single step of
gradient descent is made at every 3 except the final
one. Similarly, in the DAF only one EM iteration is
carried out except at the final value of B.

Although developed independently, the EAA/DAF
is also closely related to the probabilistic data associa-
tion filter (PDAF) used for the tracking of mobile tar-
gets in a noisy environment [8]. The PDAF is rather
similar to the GSF, but explicitely allows for the hy-
pothesis that the target has not been observed, i.e. that
all observations inside a “validation gate” are noise.
Being designed to run in real time the PDAF foresees
neither iterations nor annealing.

5. Results of simulation experiments
5.1. The ATLAS TRT

The ATLAS Inner Detector Transition Radiation
Tracker (TRT) consists of two different parts: the bar-
rel TRT and the end-cap TRT. Both parts of the detec-
tor are built up by drift tubes, so-called “straws”. In
the barrel the straws are arranged in cylindrical layers,
each straw being parallel to the beam axis. All straws
inside one layer have the same distance to the beam
axis. In the end-caps the straws are perpendicular to
the beam axis and radially positioned. Only the barrel
part of the TRT has been used in this study.

The barrel TRT consists of 75 layers with straws,
the layers ranging from a radius of 56 cm to a radius
of 106 cm. The distance between the layers is about
6.8 mm. The z range of the barrel layers is from z =
—75 cm to z = 75 cm. The straws in the innermost
9 layers are active only for |z| > 40 cm. This reduc-
tion of the active region is done in order to reduce
the occupancy in the innermost layers. All straws are
divided into two halves with independent readout at
z = 0; apart from that there is no z-information. In
each layer the distance between the straws is about
6.8 mm, and each drift tube has a diameter of 4 mm.
In total there are about 50000 straws in the barrel TRT.
The geometry and the construction of all parts of the
ATLAS Inner Detector is described in { 14]; for more
details the reader is referred to this report.

The simulated observations are given in polar coor-
dinates; they consist of the layer number k, the layer
radius Ry, the polar angle @ of the sense wire of the
straw, the absolute value of the drift distance, and the
sign of z. The observations are therefore ambiguous.
In the analysis we also use the track label attached to
each observation.

5.2. Results with perfect tracks

For a precise evaluation of the statistical proper-
ties of the four methods presented in Sections 2 and 3
we have first simulated a sample of 9800 “perfect”
tracks, without noise and neglecting all material ef-
fects in the detector. Only the measurement error has
been simulated, with a nominal standard deviation of
0.25 mm. The correct solution of the left-right ambi-
guity is known and has been used in the analysis of
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Fig. 3. Frequency distribution of (a) the transverse momentum of the tracks and (b) the number of tubes hit by a track.

the results, but not in the reconstruction. Fig. 3 shows
two characteristic properties of the sample: (a) the
distribution of the transverse momentum, and (b) the
distribution of the number of tubes which have been
hit, with an average of 36.1 and an r.m.s. of 2.6.

Initialization

All estimation methods used in our simulation ex-
periments require the knowledge of at least approxi-
mate initial track parameters. In the filter algorithms
(GSF, DAF) they are used as the reference track, i.e.
the point in parameter space which serves as the ex-
pansion point of the linear approximation of the track
model. In the iterative algorithms (DAF, EAA, ETA)
they are the starting point of the iteration.

The initial track parameters have been obtained in
the following way. In the barrel part of the TRT the
projection of a track onto the (x, y)-plane is a circle. If
it passes through the origin the circle can be described
by two parameters, its (signed) radius p and the angle
i between the tangent to the track at the origin and the
x-axis. In polar coordinates the track is approximately

a straight line. This follows immediately from the fact
that the polar angle @ of the intercept of the track with
a measurement layer of radius R is given by

®(R) = + arcsin (R/2p) =~ ¢ + R/2p, (24)

where the approximation is valid for |p| > R, in
our case for transverse momenta larger than about
2 GeV/c. The initial track parameters are obtained by
a least-squares fit of all observations to a straight line.
In the subsequent track fit the track is not required to
pass through the origin and is therefore described by
a set of three track parameters, for instance p, ¥, and
the (signed) distance from the origin at the point of
closest approach.

Tracks without mirror hits

The precision of the estimators is assessed by the
generalized variance V of the residuals of the estimated
track parameters with respect to the true values, i.e. by
the determinant of the matrix of the second moments
about zero of these residuals. Our baseline is the per-
formance on tracks without mirror hits where there is
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Fig. 4. The relative generalized variance of the ETA for tracks

without mirror hits, as a function of the width w divided by the

standard deviation of the measurement error.

no assignment problem. The point of reference is the
generalized variance of the DAF with a cutoff v/A at
four standard deviations of the measurement error. In
order to have full compatibility the EAA weights (see
Eq. (22)) have been used in the DAF.

If there are no mirror hits the ETA should perform
best if the final width w of the potential is large. This
is illustrated in Fig. 4, showing the relative general-
ized variance as a function of w, the latter being mea-
sured in standard deviations of the measurement error.
A width larger than four (Gaussian potential) to six
(Lorentzian potential) standard deviations gives the
optimal performance. The Davidon-Fletcher-Powell
algorithm [9] was used for minimizing the energy
function; with a simple gradient descent the results
are slightly worse for the Gaussian potential and much
worse for the Lorentzian (see also Table 1).

The relative generalized variance V. of all methods
is shown in Table 1. As mentioned above, the results
of the elastic algorithms (EAA and ETA) strongly
depend on the minimization algorithm. In the table
we show the results for a simple gradient descent
(GD) and for the Davidon-Fletcher-Powell algorithm
(DFP). The ETA results have been obtained with a
width w of four (ETA-G) and six (ETA-L) times the
standard deviation of the measurement error. We also
show the results of a plain least-squares estimator, im-
plemented as a Kalman filter (KF). The last column
of Table 1 shows the relative computing time .. In
order to have a meaningful comparison the annealing
schedules are the same in all cases, with the excep-
tion of the GSF which does not require annealing. The

Table 1
The relative generalized variance for tracks without mirror hits

Method Veel feel
DAF 1.00 1.00
GSF 1.00 0.4
EAA with GD 8.83 1.49
EAA with DFP 1.03 1.63
ETA-G with GD 1.79 0.73
ETA-G with DEP 1.05 141
ETA-L with GD 125.6 0.65
ETA-L with DFP 1.07 1.67
KF 1.00 0.07

timing refers to an implementation in MATLAB, an

interpreter language; for compiler languages the be-

haviour may turn out to be different.
We can draw several conclusions from these results:

- If the EAA and the ETA are to achieve full preci-
sion, simple gradient descent is not sufficient. The
Davidon-Fletcher-Powell algorithm which has
been used here gives a satisfactory result.

- The Kalman filter, the DAF, the GSF, the EAA,
and the ETA with a sufficiently wide potential give
virtually the same result. This is no surprise as in
the absence of mirror hits they all amount to a least-
squares estimation.

- The Kalman filter is clearly much faster than all the
other methods as it does not involve any iterations.
Although the GSF never has to deal with more than
one component the overhead in the code makes it
no more than two times faster than the DAF. The
annealing schedule of the DAF foresees six itera-
tions, four of them at the final “temperature”. As
each iteration requires the computation of two filters
(forward and backward filter) plus their weighted
mean, we may expect it to be slower than the plain
Kalman filter by a factor somewhat larger than 12.
This is in good agreement with our experimental re-
sults. The elastic methods with the DFP minimiza-
tion are somewhat slower than the DAF, by about
50 percent. About 80 percent of the time is spent
in the search for the minimum energy at the final
temperature. This is indispensable for a satisfactory
precision.
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Fig. 5. The relative generalized variance of the ETA for tracks with mirror hits, as a function of the final width of the potential divided

by the standard deviation of the measurement error.

Tracks with mirror hits
We now add the mirror hits to the tracks. Immedi-
ately there arise several questions:
- What is the best final value of w in the annealing
schedule of the ETA?
- What is the best cutoff v/A in the weights of the
EAA and the DAF?
- What is the best final value of 8 in the annealing
schedule of the EAA and the DAF?
In order to answer the first question we have run the
ETA algorithm with different final values of the po-
tential width w. It has turned out that even the DFP
algorithm has difficulties in locating the global min-
imum of the energy function in some cases, particu-
larly for small values of w. In order to give meaningful
results we have eliminated these tracks by cutting off
the tails in the residual distribution. The results after
trimming are shown in Fig. 5. Both types of poten-
tials show roughly the same behaviour, although on a
different scale. With the Lorentzian potential the min-
imum is at about three standard deviations; with the
Gaussian potential it is between 1.5 and two standard

deviations. The ratio is close to the expected factor of
V2 (see Subsection 4.1). Without trimming the pre-
cision is worse by at least a factor of ten. The prob-
lem can be cured by slower cooling, with accordingly
higher computational costs.

The answer to the second question is pretty obvious:
as the correct hit is always there, the cut should not be
too tight in order not to lose it. On the other hand, the
mirror hit will normally have low weight compared
to the correct hit, so it does not matter if the cut is
too loose. This is borne out by our simulation results.
Fig. 6 shows the relative generalized variance of the
DAF as a function of the cutoff, the latter being given
in terms of standard deviations of the measurement
error. The relative variance drops from about 1.93 at a
cutoff of 2.5 standard deviations to about 1.54 at four
standard deviations; this is the optimum precision that
can be obtained if the mirror hits are included, but no
additional noise. Note that on average the r.m.s. width
of the estimates increases by only 7.5 percent if the
mirror hits are included.
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Fig. 6. The relative generalized variance of the DAF for tracks
with mirror hits, as a function of the cutoff divided by the standard
deviation of the measurement error.

The last question about the final value of 8 can be
answered by looking at Table 2. It shows the gener-
alized variance of the DAF and of the EAA for two
final values of the annealing schedule. The “nominal”
value of beta corresponds to the standard deviation of
the measurement error, whereas the “frozen” value is
higher by a factor of 9. In all cases the cutoff has been
set at four standard deviations. The results of the ETA
have been obtained with a final potential width of 1.5
standard deviations with the Gaussian potential and
three standard deviations with the Lorentzian poten-
tial. We also show the results of the GSF; the first one
uses all components for the computation of the esti-
mates, while the second one uses only the best (most
probable) component. The latter is equivalent to a
combinatorial Kalman filter (see Section 3) which ex-
plores all possible combinations and chooses the best
one.

We make the following observations:

— The Kalman filter is strongly influenced by the mir-
ror hits, resulting in a very large relative variance.

- The equivalence of the DAF and of the EAA is again
illustrated by the nearly identical results.

— It does not pay to cool the DAF and the EAA be-
low the standard deviation of the measurements;
actually the precision of the estimates gets slightly
worse.

— The GSF estimate using all components is com-
parable to the results obtained with the DAF and
the EAA. The estimate using only the most proba-
ble component is slightly worse, comparable to the
“frozen” version of the DAF and EAA.

Table 2
The relative generalized variance for tracks with mirror hits

Method Veel trel

DAF nominal 1.54 1.21
DAF frozen 1.74 141
GSF all 1.59 7.04
GSF best 1.78 7.04
EAA nominal 1.56 2.12
EAA frozen 171 244
ETA-G with DFP 3.11 2.38
ETA-L with DFP 3.51 2.87
KF ~ 1500 0.08

- The ETA is worse than the other methods by a factor
of about two, even after trimming. The precision
with the Gaussian potential is somewhat better than
with the Lorentzian.

- Both the DAF and the EAA are slowed down by the
mirror hits, although the effect is not dramatic. The
ETA is hardly slower, but it has to be kept in mind
that the cooling is faster than it should be. The GSF
is now very slow because of a much larger number
of components, about 22 on average.

A point in favour of the DAF is the fact that the
covariance matrix of the estimated track parameters
is immediately available after the last iteration. This
raises the question how well the actual spread of the
estimates is described by this matrix. Qur simulation
experiment shows that with mirror hits the standard-
ized residuals of the estimated track parameters have
a standard deviation of about 1.08 to 1.09, indicating a
fairly good but not perfect agreement between the ac-
tual spread and the elements of the covariance matrix,
the latter being too small by about 20 percent.

Tracks with mirror hits and noise hits

We have concluded our investigation of the perfect
tracks by studying the robustness of the estimators. To
this end we have contaminated the perfect tracks with
noise in the following way. In each tube the correct
drift distance is replaced by a random drift distance
with probability ppeise = 0.1. The random drift distance
is drawn from a uniform distribution between 0 and
the tube radius, i.e. 2 mm. Therefore in some of the
tubes the correct hit (and its mirror hit) is missing;
there are two wrong hits instead.
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Fig. 7. The relative generalized variance of the DAF for tracks
with noise hits, as a function of the cutoff divided by the standard
deviation of the measurement error.

Because of this, the search for the optimal cutoff
in the DAF and EAA becomes very important. Fig. 7
shows the relative variance of the DAF as a function
of the cut, the latter being given again in terms of stan-
dard deviations of the measurement error. A parabola
fit to the results indicates that the optimal cutoff is at
about 2.8 standard deviations. This value depends of
course on the frequency and on the distribution of the
noise hits. In any case, a cutoff at 3 standard devia-
tions seems to be a reasonable compromise between
minimizing the loss of correct hits and limiting the
influence of noise hits. The relative generalized vari-
ance at the optimal cutoff is about 4; this means that
the standard deviations of the estimated track param-
eters are larger by only about 25 percent as compared
to the baseline (no noise, no mirror hits).

For the sake of comparison we have processed the
sample with artificial noise also with the GSF, the
Kalman filter (KF), and the ETA with the Davidon-
Fletcher-Powell minimization. The results are sum-
marized in Table 3. We observe that the performance
of the GSF has deteriorated considerably, because of
its inherent lack of robustness. The precision of the
ETA is again worse than the DAF, by a factor of about
1.5. As predicted, the Gaussian potential shows some-
what less susceptibility to mirror hits and noise than
the Lorentzian. Note that again the tails in the resid-
ual distribution have been cut off. Without trimming
the results are worse by more than a factor of ten. The
timing of the algorithms is virtually the same as with-
out noise.

Table 3
The relative generalized variance for tracks with mirror hits and
noise hits

Method Vel frel

DAF 3.96 1.19
GSF 27.33 6.86
ETA-G with DFP 5.77 2.72
ETA-L with DFP 6.56 2.89
KF ~ 1600 0.08

5.3. Results with tracks from pattern recognition

Our investigation has been concluded by studying
the performance of the DAF on tracks from pattern
recognition, The data sample was a set of 100 simu-
lated H — bb events without pile-up. In this sample
the average number of tracks is about 66, the average
number of tubes with a hit is about 2500, and the av-
erage number of tubes hit per track is about 38. About
4.4% of the hits are noise.

The initial track finding is performed by a modified
Hough transform procedure. A detailed description of
the algorithm can be found in [15]. The aim is to look
for high-energetic tracks that come from the origin
and go entirely through the barrel part of the TRT.
The track search is therefore initiated in the outermost
layers of the barrel. For each of the points in these
layers one picks out a set of points in the mid-region of
the barrel. This set consists of all points that can belong
to a track with a transverse momentum larger than
1 GeV/c, coming from the origin and going through
the current point in the outermost layers. For each
of the points in this set it is checked whether this
hypothesis is correct or not. This is done by counting
the number of points in a circular band around the
hypothesized track. If this number is small, no track is
found. If the number is large, we assume that a track
is found, and the set of points inside the circular band
is accepted as a track candidate.

It can be noted that this procedure differs slightly
from a combinatorial Hough transform. Such a Hough
transform picks pairs of points in the same way as
the method described above, but instead of checking
whether the pairs of points really belong to a track,
one fills up an accumulator array in parameter space
and finally looks for peaks in this space.
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Fig. 8. Frequency distribution of the fraction of noise hits in the track candidates in the restricted sample (a) before filtering and (b)

after filtering.

The comparison of the estimated track parameters
with the truth values is now less straightforward than
it was with the perfect tracks. First, a reconstructed
track may comprise observations from several simu-
lated tracks. The truth values are now defined as the
true track parameters of the simulated track contribut-
ing the majority of the observations. Second, the truth
values are available only at the vertex and not at the
entry of the TRT. The comparison is therefore affected
by multiple scattering and secondary interactions in
the material in front of the TRT. For this reason we
have been forced to restrict our analysis to a subsam-
ple of tracks for which the truth values are reasonably
close to the actual track, i.e. within 1 mm of at least
one of the two ambiguous hits in the first layer hit by
the track. This leaves us with a restricted sample of
1687 tracks, out of 2508 produced by the track finding.

Most of the track candidates are contaminated by
hits belonging to other tracks; these should be counted
as noise, in addition to occasional genuine noise hits.
The fraction of noise hits in the track candidates in
the restricted sample is shown in Fig. 8a. The average

noise content is close to 13%. It should be noted that
track candidates with a noise content of more than
50% are eliminated right after the track finding.

In the next step we have classified the track candi-
dates according to their noise content. Table 4 shows
the range of the four classes, the number of tracks in
each class, and the relative precision of the estimated
track parameters, as measured by the generalized vari-
ance of the residuals with respect to the truth values.
The baseline is now the class with the lowest noise
content. Due to the material effects described earlier a
direct comparison with the perfect tracks is not mean-
ingful. All results have been obtained with the DAF,
using the same cooling schedule and the same cutoff
as before.

We note that in class 2, up to a noise fraction of
15%, the effect of the noise hits is negligible; this con-
firms the excellent robustness of the algorithm. We can
also compute the noise fraction in the fitted tracks, by
counting each hit with its final weight in the DAF. The
frequency distribution of the noise content obtained in
this way is shown in Fig. 8b. The average noise con-
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Table 4
The relative generalized variance of the DAF for pattern recogni-
tion tracks

Class Noise fraction f, Number of tracks Viel

1 0.00 < fn <0.05 559 1.00
2 0.05 < fa<0.15 526 1.06
3 0.15 < fn<0.25 305 4.09
4 0.25 < fn <050 297 16.48

tent is now 8.7%, about two thirds of the value be-
fore the filter. This means that on average about one
third of the noise hits are suppressed by the DAF. At
a first glance this seems to be a rather modest perfor-
mance; it should be noted, however, that all noise hits
assigned to the candidate are necessarily very close to
the “true” track as defined by the majority hits.

6. Conclusions and outlook

Track fitting in the presence of ambiguities and
noise is basically a problem with incomplete data:
it is not known a priori which of several competing
hits in a layer of the tracking detector is the correct
one. It is therefore hardly surprising that the EM al-
gorithm - in various disguises — is a highly efficient
and robust method for tackling this problem. A poten-
tial drawback of the EM algorithm, the dependence on
the starting point of the iteration, is avoided by com-
bining it with the idea of deterministic annealing. We
have considered two implementations of this concept:
the Elastic Arms Algorithm (EAA) and the Deter-
ministic Annealing Filter (DAF). The EAA requires
the numerical minimization of a nonquadratic objec-
tive (energy) function. This is a delicate task which
we have solved by applying advanced functions from
the MATLAB Optimization Toolbox [16]. We also
have shown that a less sophisticated method like gra-
dient descent does not give the required performance.
In addition, the most accurate estimates are not found
in the limit 7 — O but rather at the natural value of T
which corresponds to the variance of the observation
error (T = 20?). The DAF, on the other hand, is an
iterated Kalman filter/ smoother, with some additional
code for computing the assignment probabilities. In
terms of computing time the two methods are compa-
rable, at least in our MATLAB implementation. The

DAF, however, has two additional points in its favour:
it is entirely straightforward to introduce process noise
like multiple Coulomb scattering, and the covariance
matrix of the estimated track parameters is immedi-
ately available.

The other methods considered in this study are not
competitive with the EM algorithm. The Elastic Track-
ing Algorithm (ETA) is less precise, being neither
a maximum likelihood nor a least-squares estimator,
and less robust, as it lacks proper competition between
hits. In addition, the minimization of the energy func-
tion is even more difficult than with the EAA. The
Gaussian-sum filter (GSF) also suffers from a lack of
robustness which can be cured in principle but only at
the expense of considerable additional computation.

In this study we have restricted our attention to in-
dividual track candidates. We have not considered the
case where several tracks are competing for the same
hit. This situation can arise for instance in very narrow
jets. In the original version of the EAA as proposed
in {1] this possibility is already foreseen. If this gen-
eral EAA is translated into an EM algorithm, one ar-
rives at a scheme in which several iterated filters run
in parallel, similar to the PMHT algorithm developed
for the tracking of multiple targets [17]. We believe
that such an approach could give significant improve-
ments in the reconstruction of narrow jets and is cer-
tainly worth to be studied in detail.

It would also be interesting to see how the PMHT
performs on the same kind of data that has been used
in this study. A necessary modification of the plain
PMHT would then be to adjust the assignment proba-
bilities in order to obtain proper competition between
the hits. A generalization of the algorithm to include
a deterministic annealing scheme will probably also
turn out to be vital. These topics are currently under
study and will be the theme of a subsequent report.
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