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Abstract

In this work we design an advanced Evolutionary Algorithm (EA) for optimizing the discrete Kalman filter (KF) model.
The EA employs parallel architecture and an advanced mutation operator called the “Selection Follower”. Its performance
is benchmarked with that of the Expectation-Maximization algorithm (EM) in minimizing the mean-square-error of the KF
prediction. Experimental results show that the EA consistently outperforms the EM and runs significantly faster under the same
number of function evaluations. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The discrete Kalman filter (KF) [1] is a robust
tracking algorithm that has long been applied to
load forecasting, as well as many other engineering
fields such as radar tracking. It formulates the least-
square filtering problem using state-space method,
featuring vector modeling of the random processes and
recursive processing of the noisy measurement data.

The major difficulty with using the KF is parameter
estimation of the state-space model [2–5]. This is par-
ticularly true with large systems and the reasons are
two-fold: first, the number of parameters grows ex-
ponentially with the state and observation dimension
(the “curse of dimensionality”), which in turn induces
multiple stationary points (multi-modality) and pos-
sibly large ratio of eigenvalues and rotated eigenvec-
tors in the search space. Second, the traditional meth-
ods for maximum likelihood (ML) identification of
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state-space system — the Newton–Raphson (NR) and
Expectation-Maximization (EM) method — are local
optimizers that converge to only one stationary point at
a rate proportional to ratio of eigenvalues. These meth-
ods are easily trapped in local-optimum when there are
multiple stationary points, and are unable to exploit
the existing optima when the eigenvalue ratio becomes
large.

In recent years Evolutionary Computation (EC) [6–
9] has become a popular global optimization tech-
nique. It is a heuristic optimization technique that does
not require derivatives or analytical approximation of
the objective function, but directly searches for the
global optimum using a population of search points.
Basing on the principle of Darwinian “Natural Se-
lection” that fit parents have greater survival chance
and are more likely to produce fit offspring through
the passing on of parental information and the ran-
dom mutation, EC evolves the population towards the
global optimum through iteratively filtering off the
less-fit search points and producing the next popula-
tion with the crossover and mutation genetic operators
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that respectively mix and perturb components of the
remaining fit search points. The Schema theorem [9]
proves that this iterative procedure exponentially in-
creases the proportion of fit individuals and the av-
erage fitness in the population. EC has been success-
fully applied to high-dimensional test functions [10]
and to real-life applications like ARMA load forecast-
ing models, Fuzzy Logic and Neural network mod-
els.

However, EC is not without drawbacks. EC often
suffers premature convergence, that is when popula-
tion gets trapped in a local optima and is unable to
progress. Common remedies include niching, increas-
ing the mutation rate and periodically re-initializing
the population. Premature convergence is particularly
severe when encountering high-eigenvalue ratio and
eigenvector rotation that commonly exists in high-
dimensional problems [11,12].

In this work we apply EC to optimizing the dis-
crete KF model. We design an advanced Evolution-
ary Algorithm (EA) that uses a parallel architecture
and an advanced mutation operator called the “Selec-
tion Follower” [13] that specializes in exploiting high-
eigenvalue ratio and rotated-eigenvector optima. The
EA’s structure, operation and settings are explained,
and it is used to estimate a set of discrete KF models
using both synthetic and real-life observation series.
The KF models have 3–10 state dimensions, giving a
total of 19–166 components to be estimated. Its perfor-
mance is benchmarked with that of the Expectation-
Maximization algorithm (EM) [2,3]. Experimental re-
sults show that EA consistently outperforms the EM
in minimizing the mean-square-error of the predic-
tion error and in addition, it runs faster under the
same number of function evaluations because it does
not require the Kalman Smoothing algorithm as the
EM does. We have therefore concluded that the EA
is a feasible alternative to optimizing the discrete KF
model.

This work is organized as follows. In the next
section, we define the problem of the discrete KF
model estimation. In Section 3, the structure and
operation of the advanced EA are discussed, which
include the parallel architecture and the SF mutation
operator. In Section 4, the EM is briefly described.
Experiments that compare the performance of the EA
and the EM are described in Section 5. The findings
are concluded in Section 6.

2. Problem definition

The discrete KF operates on the following state-
space representation [1]. Letyk denote the observation
vector(m× 1) andxk the (possibly unobserved) state
vector (n × 1) at time k, the state-space model is
described by

xk+1 = Fxk +wk, (1)

yk =Hxk + vk, (2)

given

E
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wkw

T
l

} =Qδkl,

E
{
vkv

T
l

} =Rδkl,
(3)

whereF , Q, H , R are(n× n), (n×m), (n× n) and
(m × m) matrices, respectively,wk and vk uncorre-
lated, zero-mean Gaussian noise. Eq. (1) is known as
the state equation and Eq. (2) the observation equation.
The sequence of observation and state vectors are de-
notedY = [y1, y2, . . . , yN ] andX = [x1, x2, . . . , xN ].
The KF algorithm and the estimation of the initial state
vector and state error are as described in [1]. Thus the
system may be described byθ = [F,H,Q,R], and the
total number of variables to be estimated is given by

no. of components inθ

= n× n+m× n+ (1+ 2+ · · · + n)

+ (1+ 2+ · · · +m). (4)

The first two terms in Eq. (4) refer to the number of
variables in theF andH matrices, and the last two
to the number of asymmetric variables in theQ and
R covariance matrices. In this work, our objective is
to estimate the parametersθ of the state-space model
such that the mean-square-error (MSE) of the KF
observation predictions are minimized.

3. Advanced evolutionary algorithm for
optimizing the Kalman filter model

We now present the advanced EA for optimizing the
discrete KF model. The EA employs an parallel ar-
chitecture similar to [10], which comprisesλ separate
“fields” evolving concurrently and periodically inter-
changing best-fit individuals. Each field has its own
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Fig. 1. Schematic diagram of the parallel EA.

population but uses the same genetic operators and re-
spective settings. A schematic diagram of the EA is
presented in Fig. 1.

3.1. Mechanism of isolated field evolution

We now describe the evolutionary operations of
each field. Unlike Genetic Algorithm (GA), the EA
uses real number representation of individuals. Var-
ious researches show that real number representa-
tion has advantages over binary representation that
it avoids discontinuities in the search space [14–17]
caused by binary crossover. The EA operates as fol-
lows:
(1) Initialization. The EA begins with randomly ini-

tializing a population ofp parents within the given
boundaries of each component.

(2) Reproduction. Two parents are randomly picked,
crossed-over and mutated to produce an offspring.
This procedure is repeated untilu offspring are
produced.

(3) Fitness evaluation. The fitness of offspring are
evaluated according to their return from the ob-
jective function.

(4) Selection. Select the next-generation-parents from
this-generation-parentsand offspring. High-fitness
individuals are given higher chance to survive to
the next generation.

(5) Evaluate the population status. Depending on
the density of population (of the newly selected
individuals) and the number of generations, the
next action could be either to (a) go back to
the reproduction phrase and continue evolving,
(b) reinitialize the population if the population
density is too high (overcrowded) or (c) exchange
the best-fit-individuals with other fields if one of
every fixed period is reached. The density of the
population is calculated as the population’s mean
displacement from the best-fit individual.

The EA continues until the global optimum is reached
to a given precision. If the value of the optimum is
not known, the EA continues until a given number
of function evaluations is exhausted. The following
describes each operation in detail:
• Real number representation of the solution vectors.

In order to perform the crossover operation, each set
of input variables is arranged into a vector called
string. The order of arrangement is arbitrary but
consistent. In the case of the KF model, the sets of
input variables are the matricesθ = [F,H,Q,R].
For state dimensionn = 3 and observation dimen-
sionm = 1, the total number of variables in the set
θ and therefore the length of the string is 19 accord-
ing to Eq. (4).

• Crossover. The crossover is the first phase of the re-
production phase. Two strings are randomly picked
from the parent population and the components of
the same locii (position of the components on the
string) are swapped with probabilityPcross to pro-
duce the child string.

• Mutation. The SF mutation is an original operator
introduced in [13] that specializes in optimizing
functions with high eigenvalue-ratio and rotated
eigenvectors. It is also a general purpose mutation
operator that can exploit optima in a gradient-like
speed. The SF creates the mutant with the formula

zi = xli + k(xmi − xni)

∀i ∈ [1,2, . . . ,D], l,m,n ∈ [1,2, . . . ,N] (5)
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k is a random number uniformly distributed (or any
feasible probabilistic distribution) in[0, γ ] (γ < 1).
It is for scaling the distribution size and introducing
variances. The samek value is applied to each of
the i components of the vector sizedD. The SF
uses three parent vectorsxl , xm and xn that are
randomly taken from the selected population ofN

strings for creating the mutant:xl is the central
parent, which is mutated by adding the noise vector
k(xm − xn). With tradition mutation operators, the
noise vector has a fixed mean and variance; in the
SF case, it is defined by the distribution of the
selected-population.

• Selection. The standard selection method for Ge-
netic Algorithm is the Roulette Wheel selection,
which assigns each string the survival probability
proportional to its fitness value [7]. Variations of
this scheme are also found [10]. This scheme has the
disadvantage that if the magnitude of fitness varia-
tion is unknown, the distribution of low- and high-
fitness strings becomes unpredictable. In order to
remove this uncertainty, we employ the (ρ + u) se-
lection scheme. (ρ + u) selection puts both the par-
ents and offspring in competition (that totals (ρ+u)
competitors) and keeps only the bestu strings. In
this way, the survival of the strings does not depend
on the strings’ relative fitness values but on their
ranks. (ρ + u) selection is also an elitist selection
scheme that the best strings always stay in the pop-
ulation.

3.2. Mechanism of exchanging best-fit individuals

The purpose of using multi-field evolutionary tech-
nique is two-fold. First, it makes distributed program-
ming possible for gaining speed. Second, it encourages
a more diversified search by breaking one large popu-
lation into many separate niches that may be drawn
to different optima. Although these fields evolve inde-
pendently, they exchange their best-fit individuals pe-
riodically so that through genetic operations a field can
accumulate the good “building-blocks” [9] from other
fields and increase chance to finding the global opti-
mum.

The mechanism of exchanging best-fit individuals
is as follows:
(1) Share to the pool. A common “share pool” is

established to contain the best-fit individuals of

the niches. At every fixed number of generation, a
field copies its best-fit individual to the share pool.

(2) Obtain from the pool. A field then obtainsη strings
from the share pool. These new strings, shared by
other fields, are mixed with the parents to breed
new offspring.

The “building blocks” [9] of the new strings from
the share pool are extracted with the crossover and
mutation operations into the offspring.

4. The expectation-maximization algorithm

The EM was first applied to the discrete KF model
estimation in [3]. It simplifies the problem by assum-
ing the state vectors observable, such that the ML es-
timates ofθ are obtained by minimizing the negative
log likelihoodJ (X,Y, θ)

J (X,Y, θ)= −L(X,Y, θ)

=
N∑

k=1

{
log|Q| + (xk −Fxk−1)

TQ−1(xk − Fxk−1)
}

+
N∑

k=0

{
log|R| + (yk −Hxk)

TR−1(yk −Hxk)
}

+constant. (6)

The EM iteratively minimizes this quantity through al-
ternating between the Kalman filtering and smoothing
recursions. Details of the EM can be found in [2,3].
Fig. 2 demonstrates a typical EM run in minimizing
the MSE of the KF prediction. Note that the MSE de-
creases all the time. However, in order to ensure sta-
bility of the system, the initial estimates of theta must
be reasonably close to an optimal set of theta.

5. Experiments

Our experiments aim to verify the feasibility of
EA in optimizing the discrete KF model, using the
EM as the performance benchmark. The experiments
comprise two parts. In the first part, we generate
four state-space models of different state dimension
n = (4,6,8,10) and the same observation dimension
m = 1. The elements of these models are randomly
assigned but within constraints such that the models
are always asymptotically stable. With each model,
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Fig. 2. A typical EM run in identifying the KF model.

we generate a series of 200 observations. We then
use the EA and the EM to optimize new models of
the same sizes with the corresponding series. Using
the MSE as the optimization criteria, we compare the
performance of the EA and the EM. In the second
part of experiments, we use a real-life de-trended
load series to train a KF model, following the same
procedures and criteria.

For each observation series, both the EA and EM
algorithms are allowed a maximum of 100,000 eval-
uations to ensure “fair” competition — though they
spend their resources in different ways. The EA algo-
rithm spends its 100,000 evaluations over 5 EA runs
of 20,000 evaluations each. The EM spends its re-
sources testing different starting points and iterating
from them. In order to ensure the KF models are as-
ymptotically stable, we limit each element of F within
1/

√
n such that its eigenvalues is always smaller then

1 [18]. Other limits are determined arbitrarily and are
as listed in Table 1.

The settings of the EA and the EM are as listed in
Table 2. Fig. 3 shows the detrended load series we use
for the second part of the experiments.

The results are listed in Table 3. The results favor
the EA in every category, but we must stress that some
parts of the comparisons are miss-leading because the
EA and the EM spend their computational resources
differently. For the EA, the statistics are obtained
from the best solutions of each 5 runs of 20,000

Table 1
Constraints imposed on the elements ofθ

Absolute values of elements of Constraints

F <1/
√
n

Q <1/
√
n

H <1

R <1/
√
m= 1

Table 2
Settings of the EA and the EM

EA

Number of parentsρ 20

Number of offsprintu 80

Communication interval (gen) 5

Mutation type Selection follower

k value for selection follower 0.45

Crossover probability 0.65

Number of fields 8

Number of immigrants each interval 5

Reinitialization density 0.01

EM

Max. iterations per EM run 200

Fig. 3. The normalized and detrended US annual energy series
1949–1996. Data extracted from the Energy Information Adminis-
tration (EIA) and the Bureau of Economic Analysis.

evaluations, whereas for the EM, the statistics are
obtained from testing and iterating from different
points until 100,000 evaluations are exhausted. The
mean and maximum values of the EM would therefore
be unfavorably compared, because many “bad” points
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Table 3
Performance comparison between the EA and the EM over different observation series

Synthetic data Real-life data

n 4 6 8 10 Load series (3)

Total elements 31 64 109 166 19

EA EM EA EM EA EM EA EM EA EM

Min 0.4842 0.5168 1.7614 1.7681 0.9046 0.9221 2.8564 2.8946 3.3297e−4 3.5602e−4

Mean 0.5068 0.5305 1.7659 1.7880 0.9086 0.9609 2.8597 3.0504 3.3598e−4 4.8002e−4

Max 0.5145 0.5952 1.7687 1.9188 0.9146 1.0469 2.8617 3.5404 3.4040e−4 4.9832e−4

Time (s) 12,925 33,953 16,598 44,665 22,515 66,034 31,313 112,724 2643 8166

are included in the statistics. Therefore, we will focus
on the comparison of the minimum MSE values, and
then the time factor.

Comparing the minimum MSE values, EA performs
better in every model. It records lower MSE by
roughly 0.03 in every case except forn = 6 and
the load series (only lower by 0.007 and 0.000027,
respectively). Thus for both synthetic series and real-
life series, EA outperforms EM.

Now if we inspect only the synthetic series and
compare the mean values, EA records lower by(0.02,
0.02,0.05,0.19) for n= (4,6,8,10). There is a trend
that the higher the model dimension, the better EA per-
forms. A similar trend is observed when we compare
the maximum values too. This is expected because EA
is a global- and EM is a local-optimization algorithm:
the larger and more multi-modal the search space, the
better EA performs; and vice-versa.

Regarding the time factor, EA is roughly 2.5–3
times faster than EM is in every case. This time dif-
ference is not caused by parallel-processing EA, since
we employ only one CPU for running both algorithms.
In fact, the EA receives extra overhead for multiplex-
ing one CPU for all 8 fields. The time difference is be-
cause EM requires the Kalman Smoothing algorithm
to compute statistics for estimating the model parame-
ters. Kalman Smoothing algorithm is an iterative pro-
cedure that requires similar amount of computations
as the Kalman Filtering algorithm, but in addition it
requires memory storage of statistics computed in the
Filtering algorithm. Thus comparing with the EM, EA
is much less CPU intensive, for it requires only the
Kalman filtering algorithm to compute the MSE and

its overheads for genetic operations and multiplexing
are relatively small. If we incorporate parallel process-
ing, EA will run even faster.

6. Conclusions

In this work we design an advanced EA for estimat-
ing the discrete KF model. The EA uses a parallel ar-
chitecture and an advanced SF mutation operator. Its
structure, operation and settings are explained. In or-
der to demonstrate EA’s feasibility for optimizing the
KF model, EA is benchmarked with the EM and is
used to optimize a set of KF models that include both
synthetic and real-life observation series. The models’
state dimensionsn vary from 3 to 10, totaling 19 to
166 components to be estimated. We find that EA con-
sistently outperforms EM in minimizing the MSE of
the KF models, and that the larger the dimension of
the problem the better EA performs. In addition, be-
cause the EA does not require the Kalman Smoothing
algorithm as the EM does, EA runs faster by a factor
of 2.5–3. We conclude that EA is a robust and feasible
alternative for optimizing the discrete KF model.
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