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Abstract

We present�αPDE, a new multivariate analysis technique for parameter estimation. The method is based on a direct
construction of joint probability densities of known variables and the parameters to be estimated. We show how posterior
densities and best-value estimates are then obtained for the parameters of interest by a straightforward manipulation of these
densities. The method is essentially non-parametric and allows for an intuitive graphical interpretation. We illustrate the method
by outlining how it can be used to estimate the mass of the top quark, and we explain how the method is applied to an ensemble
of events containing background. 2002 Published by Elsevier Science B.V.
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1. Introduction

In an earlier paper [1] we introduced the PDE
(Probability Density Estimation) method, an essen-
tially non-parametric and multivariate method de-
signed for identifying small signals among large back-
grounds. The method makes use of kernel density es-
timates for signal and background probability densi-
ties, and a simple discriminant function is then used
to classify candidate events. The PDE method was ap-
plied successfully to the search for the top quark at the
Fermilab Tevatron, and it is an integral part of a gen-
eral search strategy [2] for analyzing data from high-
energy physics experiments.
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In this paper we present�αPDE, an extension of
the PDE method designed for parameter estimation,
where �α represents a vector of parameters to be es-
timated. In many applications�α is a single parame-
ter, such as the mass of an unstable particle detected
through its decay products. This non-parametric and
multivariate method may be particularly applicable to
problems such as determining the mass of the top
quark in the upcoming collider run (Run II) of the Fer-
milab Tevatron.

Multivariate methods are now widely recognized
as being more powerful than univariate methods, and
a non-parametric method has the advantage that one
need not make assumptions about the forms of proba-
bility distributions. Those who feel uneasy about the
“black-box” quality of neural networks should wel-
come the straightforward manipulation of probability
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densities used in this method, and the intuitive graphi-
cal interpretation that results. Because probability den-
sities are constructed and manipulated directly, obtain-
ing any additional statistical information—Bayesian
credible intervals, for example—is a straightforward
exercise.

A typical parameter estimation problem is de-
scribed in Section 2; our recipe for solving it is pro-
vided in Section 3. The salient features of the method
and its potential advantages are summarized in Sec-
tion 4.

2. The problem

The next decade of high energy collider physics
will emphasize measurements and searches for new
phenomena at the scale of several hundred GeV. The
existence of a new particle at this scale can be convinc-
ingly demonstrated by observing a peak in an invari-
ant mass distribution, but the signature may be such
that more indirect methods of establishing the parti-
cle’s existence, and subsequently measuring parame-
ters such as its mass and couplings, are required. We
introduce�αPDE with an example of this nature: the
determination of the top quark mass. Top quarks are
pair-produced at the Fermilab Tevatron, each decay-
ing promptly to aW boson and ab quark. EachW
boson in turn decays either to a charged lepton and
a neutrino, or to two quarks. Quarks hadronize, ap-
pearing in the detector as collimated flows of energy
(jets). The characteristic experimental signature for a
top quark event is therefore a final state containing
either an energetic lepton, missing transverse energy,
and several energetic jets, or a final state containing
two energetic leptons, missing transverse energy, and a
pair of jets; decays to six jets are difficult to distinguish
from events in which no top quark was produced. The
application of selection criteria favoring events with
jets originating fromb quarks enhances the fraction of
top quark events in the sample.

For the sake of simplicity we assume that two vari-
ables�x = (x, y) have been identified for this analysis.
This pair might be the transverse energies of the lep-
ton and the leading jet; it might be the invariant mass
of the sub-leading jets and the transverse momentum
of theW boson; it might be the scalar sum of all jet
transverse energies and the output of a neural network

built with event-shape variables. No special assump-
tions about the nature of these variables need be made.

3. The recipe

The goal is to construct a method that performs
as well as (or better than) such popular algorithms as
neural networks, but to keep the method sufficiently
simple that it reads like a recipe. The recipe follows.

3.1. Specify p(m)

This method has its roots in Bayesian statistics,
and as a result it has the advantage (disadvantage)
of enabling (requiring) the specification of a function
p(m|I) that encodes prior beliefs about the value of
the top quark massm. I here is used in standard
Bayesian notation to represent all assumptions implicit
in our specification of this prior probability. The basic
assumptions contained inI will not change, so we
drop it from here on, writing simplyp(m). A natural
choice forp(m), used when there is strong belief that
the true mass must lie somewhere betweena andb but
no reason to prefer any value within that range over
any other, is the flat prior:p(m)= 1

b−a
for a <m< b,

and 0 elsewhere.

3.2. Generate Monte Carlo events

Monte Carlo events are generated with top quark
massesm pulled from the distributionp(m) specified
above. That is, the probability that an event with a top
quark mass betweenm andm + δm is generated is
p(m)δm. For each Monte Carlo event we calculate the
two variables�x = (x, y).

A histogram in(x, y,m) filled with the generated
events approximates the joint densityp(x, y,m). This
function has the property that, given an event in which
a top quark is produced and decays to the observed
final state, the probability that the top quark mass was
betweenm andm + δm, the first variable betweenx
and x + δx, and the second variable betweeny and
y + δy, is simplyp(x, y,m)δx δy δm.

3.3. Construct a training array T

Each of theN Monte Carlo events just generated
is characterized by three numbers: the value ofx, the
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value ofy, and the top quark massm. The Monte Carlo
events are labeled with the indexi (i = 1, . . . ,N ); the
three numbers corresponding to theith event are then
xi , yi , andmi . Define theevent vector �vi for the ith
Monte Carlo event by

�vi = (�xi,mi), (1)

and define thetraining array T for the entire set of
Monte Carlo events by

Tij = (�vi)j . (2)

Here and belowi ranges from 1 toN and indexes the
Monte Carlo events;j ranges from 1 to 3 and indexes
the components of the event vector�v.

3.4. Calculate the covariance matrix

Having defined the event vector�v, calculate the
mean event vector

〈�v〉 = 1

N

N∑
i=1

�vi (3)

and construct thetraining covariance matrix

Σkl = 1

N

N∑
i=1

(
(�vi)k − 〈�v〉k

)(
(�vi)l − 〈�v〉l

)
(4)

in the standard way.Σ is a 3 by 3 symmetric matrix,
with Σ12 = Cov(x, y), Σ13 = Cov(x,m), and so on.

3.5. Estimate the joint density p(�v)

In Section 3.2 we imagined filling a three-dimen-
sional histogram in�v with Monte Carlo events, and
we recognized that the resulting histogram represents
an estimation of a probability density. A well-known
technique in multivariate statistics involves estimat-
ing a probability density not by filling a histogram,
but rather by summing kernels of probability placed
around each point. Due to its familiarity and smooth-
ness properties, a favorite kernel choice is the multi-
variate Gaussian:

K(�v)= 1

(
√

2πh)3
√

det(Σ)
exp

(−�vTΣ−1�v
2h2

)
. (5)

The vector �v is the same three-component vector
defined above, andΣ−1 is the inverse of the training
array covariance matrixΣ . The parameterh is known

in the language of density estimation as asmoothing
parameter; it controls the width of the kernels placed
around each point. Theoretical arguments suggest an
optimal choice ofh ≈ N−1/(d+4) as a function of the
number of data pointsN and the dimensionalityd of
the variable space.1

An estimate of the joint probability densityp(�v)
is then obtained simply by summing kernels centered
about each of theN data points�vi , so that

p(�v)= 1

N

N∑
i=1

K(�v − �vi). (6)

3.6. Compute the posterior density p(m|�x)

A physicist attempting to measure the top quark
mass is interested in theposterior density p(m|�x) for
m. In words,p(m|�x) is the probability that the top
quark mass ism given that we have observed an event
with variable values�x. This posterior density is easily
obtained. The probability of obtaining both�x andm
is equal to the probability of obtaining�x multiplied
by the probability of obtainingm given that you have
obtained�x:

p(�x,m)= p(�x)p(m|�x), (7)

and the probability of obtaining�x is given by integrat-
ing the probability of obtaining both�x andm over all
values ofm:

p(�x)=
∫

p(�x,m′)dm′. (8)

Thus the posterior densityp(m|�x) is related to the
joint densityp(�x,m) simply by

p(m|�x)= p(�x,m)∫
p(�x,m′)dm′ . (9)

3.7. Compute m̂ (optional)

In the Bayesian view, the posterior density is the
natural result of this recipe. Nonetheless, it is often

1 This expression forh depends on assumptions about the
probability density that we have not made explicit, and is not
exact [3,4]. In practice,h may be optimized for any set of Monte
Carlo events by constructing and minimizing some appropriate error
estimateχ(h). ForN = 105 andd = 3, the optimal choice forh is
roughly 0.20.
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convenient to reduce the posterior densityp(m|�x) to
a single number̂m representing thebest estimate of
the parameter in question. Among the natural choices
for the best estimate are the mean, median, and mode
of the posterior distribution. Adopting the last for the
purposes of this discussion, we solve the equation

p(m̂|�x)= max
m

p(m|�x) (10)

numerically form̂. Since the denominator of Eq. (9)
is independent ofm, maximizing the posterior density
p(m|�x) is equivalent to maximizing the joint density
p(�x,m), which we have constructed explicitly. The
extent to which the posterior densityp(m|�x) peaks
around the valuem̂ depends, of course, on how
strongly the variables�x correlate with the true massm.

We note that this method can be modified to
produce results that obey the frequentist notion of
coverage. Assume that a 68% confidence region is
desired. Starting withp(�x|m), draw for each fixed
m the contourCm in �x-space enclosing 68% of the
density and minimal area. Then upon observing�x in
the data, the 68% confidence region form is the union
of all values ofm for which �x lies insideCm.

Extension to the case of an ensemble of data events
is treated in Appendix C.

4. Conclusions

The analysis method described here is quite gen-
eral, and can be used in the context of any parame-
ter estimation problem. The non-parametric approach
used to estimate probability densities is helpful when
the distributions under consideration do not lend them-
selves to an obvious parameterization.�αPDE allows
the use of several measured variables, and enables
the simultaneous estimation of several parameters.
The generalization to arbitrary dimension is provided
in Appendix A. Bayesian credible intervals and mo-
ments are easily obtained from simple manipulations
of the joint probability density.

Appendix A. The general multivariate case

For pedagogical reasons,�αPDE has been intro-
duced through a specific example—determining the
massm of the top quark from two measured quantities

x andy—and the expressions in the text are therefore
specific to that example. In this appendix we provide
the formulae for the general case.

In the general case, let each event be character-
ized byd1 known variables�x andd2 unknown para-
meters�α. Let d = d1 + d2, and let thed-dimensional
event vector be�v = (�x, �α).

Theith Monte Carlo event is now described by the
event vector

�vi = (�xi, �αi), (A.1)

and the entire Monte Carlo sample is described by the
training array

Tij = (�vi)j , (A.2)

where j now ranges from 1 tod . The mean event
vector is

〈�v〉 = 1

N

N∑
i=1

�vi (A.3)

and the training covariance matrix is

Σkl = 1

N

N∑
i=1

(
(�vi)k − 〈�v〉k

)(
(�vi)l − 〈�v〉l

)
, (A.4)

as before, and the general multivariate Gaussian is
given by

K(�v)= 1

(
√

2πh)d
√

det(Σ)
exp

(−�vTΣ−1�v
2h2

)
.

(A.5)

Finally, in Eqs. (9) and (10),m should be replaced by
the vector�α.

In practice, limited computing resources place an
upper bound onN , and hence an upper bound ond .
The optimal accuracy of the kernel estimate is of order
N−s/(2s+d), wheres is a positive integer that reflects
the assumed smoothness of the unknown density,
and a typical assumption of continuous and square
integrable derivatives up to second order corresponds
to s = 2 [3,4].

Appendix B. Alternative to generating a random
sample of Monte Carlo events

In this appendix we describe a modification to the
procedure described in the text if practical constraints
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prevent the generation of events pulled from a continu-
ous priorp(m), but allow the generation of events atq

discrete valuesmj , wherej = 1, . . . , q .
Two changes are required in the first five steps of

the recipe (Sections 3.1–3.5). First, it is assumed that
practical constraints require Monte Carlo events to be
generated at the discrete massesmj , rather than as de-
scribed in Section 3.2. Second, the function calculated
in Eq. (6), which may no longer be interpreted as a
joint density, should be re-labeled. For lack of a better
alternative, call itξ(�v).

We now add a step 512 between Sections 3.5
and 3.6. The functionξ(�v) is clearly not an appropriate
density. If events have been generated assuming five
different massesmj , a graph ofξ(�v) might appear as
shown in Fig. 1. We see that the density has ridges
along the values ofm for which events have been
generated, with corresponding valleys in the regions
between these values.

An appropriately rescaled probability density
p(�x,m) can be generated by multiplyingξ(�v) by a
normalizingm-dependent factors(m):

p(�x,m)= ξ(�x,m)s(m). (B.1)

This normalizing factor will correct for the fact that
valleys have been introduced into the density by
only generating events at specific massesmj . The
requirement that∫

p(�x,m)d�x = p(m) (B.2)

determines this normalizing factor uniquely. The de-
sired joint probability densityp(�v) is then given by

p(�v)= ξ(�v)p(m)∫
d�x ′ξ(�x ′,m)

, (B.3)

and the final step (Section 3.6) is exactly as before.
The rescaled density of Fig. 1 is shown in Fig. 2.

We mention briefly a useful shortcut when calculat-
ing integrals such as that appearing in the denominator
of Eq. (B.3). Multidimensional integrals are difficult
to calculate in general, but this integral can be han-
dled analytically provided one uses Gaussian kernels.
Assume as in Appendix A that the vector of known
variables�x is of d1 dimensions, that the vector of un-
known variables�α is of d2 dimensions, and that the
Monte Carlo has a covariance matrixΣ . Then the rel-
evant formula is

Fig. 1. A sample functionξ(x,m) that might be constructed from
Monte Carlo events at massesm = 10, 20, 30, 40, and 50. Notice
the ridges in this function, due to the fact that it is constructed from
events at specific masses.

Fig. 2. The densityp(x,m) formed by rescaling the function
ξ(x,m) shown in Fig. 1. Notice how this rescaling corrects for the
fact that only events at specific masses were used in the construction
of ξ(x,m).

∫
K(�x, �α)d�x

= 1

(
√

2πh)d2
√

det(Σ ′)
exp

(−�αTΣ ′−1�α
2h2

)
, (B.4)

whereΣ ′ is the d2 by d2 sub-matrix ofΣ formed
by retaining elements with row and column numbers
larger thand1.

Appendix C. Background events

In the text we considered the problem of determin-
ing the top quark massm for one candidate event.
In a real analysis there will ben such events, and of
those some fractionb are expected to be background
events—events that do not contain a top quark at all.
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This appendix shows how to apply�αPDE to a com-
plete analysis.

Signal and background Monte Carlo events are
generated and used to construct the signal density
ps(�x, �α), as described in Sections 3.1–3.5, and the
background densitypb(�x), which is independent of�α.
From a careful analysis of background efficiencies we
determine the probabilityp(b) that a fractionb of our
events are background events. In previous sections of
this article �xi referred to Monte Carlo events; in this
section we change notation and label then observed
data events by�x1, . . . , �xn.

The goal is to compute the posterior density
p(�α|�x1, . . . , �xn). Since the observations�x1, . . . , �xn are
assumed to be independent,p(�x1, . . . , �xn|�α,b) factors
into a product:

p(�x1, . . . , �xn|�α,b)=
n∏

i=1

p(�xi |�α,b). (C.1)

The probabilityp(�xi |�α,b) for the ith data event can
be written in terms of the signal and background
probability densities as

p(�xi |�α,b)= (1− b)ps(�xi |�α)+ bpb(�xi), (C.2)

where p(�x|�α) = p(�x, �α)/p(�α). Integrating out the
nuisance parameter b in Eq. (C.1) leaves

p(�α|�x1, . . . , �xn)

=Np(�α)
1∫

0

(
n∏
i=1

[
(1− b)ps(�xi |�α)+ bpb(�xi)

])

× p(b)db, (C.3)

where N is a normalization factor ensuring that∫
p(�α|�x1, . . . , �xn)d�α = 1, andp(�α,b) = p(�α)p(b) is

assumed.
The most likely values of the parameters�α are then

those for whichp(�α|�x1, . . . , �xn) achieves its maxi-
mum, and the uncertainty on these values can be es-
timated from the width of the peak. Other frequently-
used best estimates and their errors are easily com-
puted, if desired, from straightforward manipulation of
the posterior densityp(�α|�x1, . . . , �xn).
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