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Abstract

We review the modelling of multiple Coulomb scattering by Gaussian and semi-Gaussian mixtures. We give explicit formulas
for the computation of the mixture models and for the simulation from the models. We verify the convolution property of the
model and compare it to GEANTA4. Finally we present implementations in MATLAB and Q42001 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Precise modelling of multiple Coulomb scattering (MS) requires an adequate representation of the tails. The tails
are most prominent in thin scatterers but persist also in thicker scatterers, up to about a radiation length. In two
previous publications mixture models have been described which represent the core of the projected distribution
by a Gaussian and the tails either by a Gaussian [1] or by a scaled single scattering density [2]. The semi-Gaussian
mixture is most suitable for the simulation of MS in thin scatterers, whereas the purely Gaussian mixture is suitable
for simulation in thick scatterers and for use in track reconstruction [3]. The distinction between “thin” and “thick”
scatterers is based on the approximation quality of the respective models.

We first review the two mixture models and summarize the computation of the mixture parameters. We then
discuss the simulation from the models. As we focus on MS distributions far from the Gaussian limit, the
projected scattering angles cannot assumed to be independent; they are, however, uncorrelated because of azimutha
symmetry if the projections are made on two orthogonal planes intersecting along the direction of the particle. In
order to get the correct dependency structure of the projected angles the simulation has to be done in space. We
derive the corresponding mixture models in space and give explicit formulas for generating random angles both in
space and in the projections.
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The projected scattering angles should have the convolution property, i.e. their distribution should be independent
of the number of steps taken in the scatterer. It is shown empirically that our model fulfills this requirement to very
good precision. The model is also compared to the one employed by the GEANT4 simulation package. Finally, we
describe the implementation of the model in MATLAB and in C++.

2. The mixturemodels
2.1. Physics background

In the following we always assume that the scattering angles are sufficiently small so that the projected angles can
be added. Under this assumption the projected MS distributions can be obtained by repeated numerical convolution
of the projected single scattering distribution. The results of this procedure have been described in detail in two
previous publications [1,2]. It should be noted that the scattering angles in space cannot be added.

Using the differential cross section of elastic Coulomb scattering as given in [4], the density of the scattering
anglef in space is given by

2420

1O = Gz a2z on® @

where we have assum@d« 1. The parameterg andb are the minimum and the maximum scattering angle,
respectively [4]:
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The shape of the cutoff &t= b is largely irrelevant; for the sake of simplicity we have used a sharp cutoff.
From the density in Eq. (1) the density of the projected single scattering éngén be derived [1]:
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Obviously bothu andb depend on the material of the scatterer. If the distribution is standardized j the central
part is nearly independent of the material, the main difference being the range of the tails (Fig. 1).
The projected MS densities can then be obtained by repeated convolutions of the projected single scattering
densities. A couple of them are shown in Fig. 2.
In practice the average numhgrof scattering processes has to be related to the material and to the thickness of
the scatterer. Assume thais the thickness of the scatterer akiglis its radiation length, wher# andXg are both
given either in gcn? or in cm. Letd’ = d/ Xo. Then
— dNo — d'-1587-10"- 713  4.2215.10%. 743
N(d)=——=d No~ ~
Xo B2(Z + 1) In(2872-1/2) B2A
whereN is the average number of scattering processes per radiation lehgtlihe charge of the nucleus, is
the atomic mass number of the material gne v/c is related to the velocity of the scattered particle [1]. We also
assume that the scattered particle has unit charge.
In what follows, all approximating mixtures are given in standard measure. The mixture has therefore to be
scaled with the total standard deviation(6, |d) of the projected MS distribution [5]:
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Fig. 1. The probability density function of the projected single scattering angle in standard measure. Top: central part on a linear scale, bottom:
entire distribution on a logarithmic scale.

wherep is the momentum of the scattered particle in GeW the implementation described below, an additional
scale factor allows fine-tuning of the width by the user.

2.2. The semi-Gaussian mixture

We shall see below that in thin scatterers a Gaussian mixture is but a poor approximation to the MS distribution.
For simulation purposes we propose to use a mixture with a Gaussian core and non-Gaussian tails [2]:

fO)=(1—2) (6x:0,0%) +¢- g6y a,b), (6)
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Fig. 2. Probability density functions of the projected MS angle in carbon)fsingle scattersN =2",n =0, 3,6, ..., 21, 24). The dashed
line in the bottom figure is the density of a standard Gaussian. All densities are in standard measure.

wherep(by; 0, 02) is the Gaussian density with mean 0 and variaméeand g(6,; a, b) is the density of the
projected single scattering angle (see Eq. (3)).

This mixture model has four free parametersl, ¢, o). In standard measure the tail weightan be expressed
in terms ofa, b, ando?:

1-02
£= max<o’ a2[In(b/a) — 0.5] 02)' 0

Above a certain thickness of the scatterer this mixture model is no longer appropriateyanidl become negative.
In this case it is set to 0. If this happens, the Gaussian mixture model should be used instead.
The paramete can be approximated by

0 b _ 41000

JN(no—05) a  z%

b=



234 R. Frihwirth, M. Liendl / Computer Physics Communications 141 (2001) 230-246

A nearly material-independent representation in the required range can be achieved if the core varmmte
the tail parametes are considered as functions of= Z%1In N, whereN is the average number of scattering
processes (see Eqg. (4)). In [2] a polynomial approximation of degree 2 and 4, respectively, has been obtained:
02 =1.827-1071+3.803-1072- n +5.783- 107* . n?, (9)
a =2822-1014+9.828.-1072.n — 1.355. 10 2. n2 4 1.330- 10 3. n® — 4.590- 1075 . n*. (10)

2.3. The Gaussian mixture

The purely Gaussian mixture used in [1] has the form
[0 =(1—8)-9(6::0,01°) + ¢ 9(6:; 0,02°), (11)

whereo12 < 022 ande < 0.5. The core variance:? is parameterized in terms of the reduced thickngss:
d/B%Xo, whereXj is the radiation length of the scatterer:

012 =8.471-10"1+3.347. 102 Ind) — 1.843- 103 (Indp)°. (12)
The tail weights is parameterized in terms of a modified reduced thickdgss 2%3d /%X o:

4.841.107246.348-10°3.Ind] + 6.096- 10~*- (Ind})?,  if Indy <05, 13
E =
—1.908- 1024 1.106- 1071 - Indjj — 5.729- 1073 (Indj)?, if Ind} > 0.5.

As the mixture is in standard measure the tail variance can be computed by

1—(1—¢)o7?
002 = 1-d=-eon” (14)
&
If d/B%Xg is larger than 10, the tail component of the Gaussian mixture is negligible, and a single Gaussian is

sufficient.
2.4. Comparison with the actual distributions

The quality of the approximation can be assessed by the Kullback—Leibler diverférici) of the mixture
f(6,) from the actual MS densitk(6,) as obtained by convolution:

D(fllh) = f F@)IN(f(0:)/h(6y)) dby. (15)

Fig. 3 shows the Kullback—Leibler divergence of the semi-Gaussian mixture (6), the Gaussian mixture (11), and
the Gaussian approximation with the Highland formula [6,7]. It can be seen that the Gaussian mixture is always
better than the purely Gaussian model, and that below a certain thickness the semi-Gaussian mixture is better than
the Gaussian mixture. The point of crossover can be parameteriz&t88% o = 0.6/ Z°9.

Figs. 4 and 5 show the actual and the model densities for some valugs<gf We assume here and in what
follows thatg = 1. It is obvious that for thin scatterers the purely Gaussian mixture is a poor approximation to the
actual distribution, whereas the semi-Gaussian mixture fits almost perfectly.

3. Simulation

If 6 is the MS angle in space, the projected MS angles- 6 cosp andf, = 6 sing are always uncorrelated,
because of the azimuthal symmetry. They are, however, not independent, except in the Gaussian limit where their
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Fig. 3. The Kullback-Leibler divergence of the two mixture models and the Gaussian model due to Highland, as a function of the number of
radiation lengths traversed. The vertical line shows the point of crossover between the mixture models.

joint distribution is a two-dimensional Gaussian. In order to get the correct dependency structure when simulating
pairs of projected scattering angles, one has to go back to the spatial scatterirgy atileugh the distribution of

6 = (62 +62)Y/2is in general not uniquely determined by the projected distributiosis ahdé,, it is not difficult

to find a plausible mixture density éfwhich has the desired projected mixture densitie,aindo, .

3.1. Smulation fromthe single scattering distribution

In very thin layers the best precision is obtained when multiple scattering is simulated by summing over arandom
number of single scatters, the number being distributed according to a Poisson distribution. We propose to apply
this procedure whenever the average number of scatters is below 10. The single scattering angléihaptoe
density given in Eq. (1) and is generated according to the formula

1—u
b=ab\ (16)

whereu is uniformly distributed in [01] anda, b are determined according to Eq. (2). The azimptis drawn
from a uniform distribution iff0, 27 ], independently of:.
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Fig. 4. The probability density function of the projected MS angle in silicon obtained by convolution (solid line), the semi-Gaussian mixture
model (dashed line), the Gaussian mixture model (dotted line), and the Gaussian model due to Highland (dashed-dotted line). All densities are
standardized.
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3.2. Smulation from the semi-Gaussian mixture

It can easily be shown that the following mixture model of the distributiof wields projected densities of the
desired form (6):

92792 2
f(e)z(l_g).eexp( 0</20¢) 2a<6

o ° @y anz on®:
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Fig. 5. The probability density function of the projected MS angle in silicon obtained by convolution (solid line), the semi-Gaussian mixture
model (dashed line), the Gaussian mixture model (dotted line), and the Gaussian model due to Highland (dashed-dotted line). All densities are
standardized.

where the second component is the density of the single scattering angle in space (Eg. (1)). Drawing a random
number from the distribution with density (17) is accomplished in the following way:

o+/—=2Inu if v>e,
6= 1—u ) (18)
ab,| — if v<e,
ub? + a?

whereu and v are independent and uniformly distributed in 1). The azimuthy is drawn from a uniform
distribution in[0, 2], independently ofi andv.



238 R. Fruhwirth, M. Liendl / Computer Physics Communications 141 (2001) 230-246

3.3. Smulation from the Gaussian mixture

The following mixture model of the distribution éfyields projected mixture densities of the desired form (11):

0 exp(—62 /2012 0 exp(—62 /2072
fO)=1-p) LR/ | OO0 /202) (19)
o1 02
Drawing a random number from the distribution with density (19) is accomplished in the following way:

9_{01\/—2|nu if v>e, (20)
o2v/=2Inu if v<e,

whereu and v are independent and uniformly distributed in 1). The azimuthy is drawn from a uniform
distribution in[0, 2rr], independently ofi andv.
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Fig. 6. The probability density function of the projected MS angle in a silicon scatterer of thickifeskd line) and the frequency distributions
of simulated samples obtained by dividing the scatterersirgtices ¢ = 1: circles,n = 10: trianglesy = 100: squares).
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4. The convolution property

A statistical model of multiple scattering in a projection should have the convolution property: The scattering
angle induced by a scatterer of thicknésshould have the same distribution as the convolution e€attering
angles induced by: contiguous scatterers of thicknegdgn each. In a simulation program the lack of the
convolution property could lead to some unpleasant surprises. The convolution property is trivially fulfilled by
the Gaussian model if the variance is strictly proportional to the thickdess the Highland model [6,7] the
convolution property is violated, albeit to a fairly small degree. If we consider, for instance, a scatterer with a
thickness of 0.1 radiation lengths, the variance of the projected scattering angle according to Highland is equal to
02 =154/(pB)?, p being given in MeVc. If the same scatterer is considered as an assembly of ten scatterers of
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Fig. 7. The probability density function of the projected MS angle in three scatterers of thickresg (our model, solid line), and the
frequency distributions of simulated GEANT4 samples obtained by dividing the scatterer slices ¢ = 1: circles,n = 10: triangles,
n = 100: squares).
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0.01 radiation lengths each, the variances sum wFte 12.6/(pp)? or about 82 percent of the value above. This
reflects the fact that the Highland model deliberately neglects the tails and models only the width of the Gaussian
core. This feature of the Highland model has been our initial motivation to look for models with strictly additive
variances which nevertheless reproduce the width of the core.

As our model is a rather simple approximation to the actual distributions we cannot expect that the convolution
property holds precisely as far as the shape of the distributions is concerned, although the model is constructed
such that the variances are always additive. We can, however, check empirically to which degree the shape of
the distribution obeys the convolution property. We give a few examples with silicon scatterers. Fig. 6 shows the
mixture density of the projected scattering angle after 1 percent, 10 percent and 100 percent of a radiation length in
silicon, the distribution of the corresponding simulated sample, and the distributions of simulated samples obtained
by dividing the scatterer into 10 and 100 slices, respectively. The agreement is excellent, both in the Gaussian core
and in the tails.

4 | (b) Silicon, d/X0=0.01%

(a) Silicon, d/X0=0.001%
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Fig. 8. The probability density function of the projected MS angle in a silicon scatterer of thickifeas model, solid line) and the frequency
distributions of simulated GEANT4 samples (circles). Bee X, the scatterer has been divided into 10 slices.
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Fig. 9. The probability density function of the projected MS angle in a scatterer of thickhéssr model, solid line) and the frequency
distributions of simulated GEANT4 samples (circles). The material is carbon (left hand side) and lead (right hand side).

Ziiz;rison of computation time between MATLAB and C++
Model d/Xo C++ [sec] MATLAB [sec] MATLAB/C++
GaussMix 2 14 44.2 2.7
SemiGauss 1104 157 479 31
FewScaft (N = 8.6) 1.107° 1054 5353 5.1
FewScatt ¥ = 4.3) 5.10°6 56.7 2793 4.9
FewScatt ¥ = 0.86) 1.10°% 17.2 920 5.3

aSimulation by summing over a Poisson distributed number of single scatters.
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5. Comparison with GEANT4

In this section we compare our model with the distributions produced by GEANT4 [8], which is a very general
simulation program widely used in high-energy and nuclear physics. Version GEANT4.2.0.ref03 was used to
produce the results presented here. No significant differences in the general behaviour of the GEANT4 multiple
scattering model were found when comparing selected results with the latest available version GEANT4.3.1.

The comparison is complicated by the fact that the model currently employed by GEANT4 lacks the convolution
property. As an example, Fig. 7 shows the frequency distributions of the simulated projected scattering angle after
a radiation length of material, the material being divided into 1, 10, and 100 slices. They exhibit discrepancies both
in the core and in the tails of the distribution. Neither of them agrees extremely well with our model. For carbon
and silicon, the best agreement is foe 10, while for iron it is best forn = 100.

Fig. 8 shows a comparison of our model with the GEANT4 simulations, over a wide range of the thickness of the
scatterer. The material is silicon. The agreement is good for scatterers thicker than about one percent of a radiation
length, and is somewhat worse for thinner scatterersdFoXo, we have chosen the sample with= 10 slices in
order to get better agreement. Fig. 9 shows more comparisons, the material being carbon and lead. The agreement
is rather good for carbon, and clearly worse for lead.

Figs. 8 and 9 also show that in GEANT4 the shape of the distribution changes very little with the thickness of
the scatterer, whereas in our model the change is much more pronounced. This, in conjunction with the fact that the
GEANT4 model lacks the convolution property, leads us to suspect that the current GEANT4 model is still capable
of improvement.

6. Implementation

We have implemented the model in MATLAB [9] and C++. Although the C++ version was not designed for
numerically optimal performance, it is still faster than the vectorized MATLAB version by a factor between 3
and 5. Table 1 shows a speed comparison between the two implementations.

The simulations were carried out on a Pentium 11l 600 MHz PC, with MATLAB 5.3 running under Windows
NT 4.0, and the C++ implementation compiled with GNU egcs-2.91.66 and running under Linux Redhat 6.1. We
have simulated 10events for 1 GeYec muons in carbon varying the thickness in order to trigger different models.

We now give a brief description of both versions. The source code is available from the authors on request.

6.1. MATLAB version

There are two main functions which compute the mixture density and generate scattering angles, respectively.
In both functions the scale factecal e can be used to adjust the standard deviation of the distribution. It should
be set to 1 if no scaling is required.

The mixture density can be computed by calling the funcfenh _densi ty. The calling sequence and the
explanation of the input and output parameters is shown in Table 2.

Two vectors of projected scattering angles can be generated by calling the fugictiomi xt ur e, described
in Table 3.

In addition to the two main functions, there is a set of internal functions which are called by the two main
functions, but can also be called by the user (Table 4).

Note that the functiongaussm x_pdf andseni gauss_pdf return the standardized probability density
function which has to be scaled & grma_t ot . All functions si m * internally call the MATLAB function
r and which produces uniform random number in the inteif@al].



R. Fruhwirth, M. Liendl / Computer Physics Communications 141 (2001) 230-246 243

Table 2

The MATLAB functionget _density
% %
function [f,sigma_tot]l=get_density(x,beta,p,d,Z,A,scale) %
% Compute the probability density function of the mixture %
% %
% Input: x ...... vector of x values %
% beta ... v/c (0O<beta<=1) VA
% P oeee-. momentum in GeV/c %
% d ...... thickness of scatterer over radiation length %
% Z ..., average nuclear charge %
% A Lo average atomic mass %
yA scale .. scale factor on total standard deviation %
% == -—=%
% Output: £ ......... probability density function f(x) %
% sigma_tot.. (scaled) standard deviation %
% - -

Table 3

The MATLAB functionsi m_mi xture
YA %
function [thx,thyl=sim_mixture(beta,p,d,Z,A,scale,n) %
% Simulate two arrays of uncorrelated scattering angles %
YA %
% Input: beta ... v/c (O<beta<=1) %
% P -vv--- Momentum in GeV/c %
% d ...... Thickness of scatterer over radiation length %
% Z ...... average nuclear charge %
% A oL average atomic mass %
% scale .. scale factor on total standard deviation %
% no...... length of thx and thy %
YA yA
% Output: thx,thy ... two scattering angles %
% in orthogonal projections pA
% thx and thy are of size (n,1) %
% YA

6.2. C++ version

An UML diagram of the class design is shown in Fig. 10. The clbsg serves as an interface to
the user. The required simulation parameters have to be filled NetPar ans. According to the given
parameters the methddsc: : confi gur e(..) selects the appropriate multiple-scattering model automatically.
A manual selection is, however, always possible through a calkto: : chooseUnit (..). The method
Msc: : si mul at e(t hx, t hy) triggers the actual simulation ef pairs of projected scattering angles, where
n is the size oft hx, and stores them in the vectar®ix andt hy, respectively. The code snippet in Table 5
illustrates the usage of the C++ implementation.

Each multiple scattering model is implemented as a subclas&ésobni t . The subclassebtcSi ngl e,
MscFew, MscSem Gauss, MscGaussM x correspond to their MATLAB counterpartsi m si ngl e-
scatt, simfewscatt andsoon,and can be used directly withouttbe interface class. In order to set the
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Table 4
Other MATLAB functions
% h
function [varl,var2,epsi,sigma_tot]l=get_gaussian(beta,p,d,Z) %
% Get the parameters of the pure Gaussian %
% h
function [varil,var2,epsi,sigma_tot]=get_gaussmix(beta,p,d,Z) %
% Get the parameters of the Gaussian mixture %
% )
function [a,b,varl,epsi,sigma_tot,N]=get_semigauss(beta,p,d,Z) %
% Get the parameters of the semi-Gaussian mixture %
% N is the average number of scattering processes yA
% h
function [a,b,sigmal=get_single(p,Z,A) %
% Get the parameters of the single scattering distribution %
% h
function y=gaussmix_pdf (x,varl,var2,epsi) h
% Compute the standardized density of the Gaussian mixture yA
% )
function y=semigauss_pdf(x,a,b,varl,epsi) %
% Compute the standardized density of the semi-Gaussian mixture %
% %
function [thx,thyl=sim_gaussmix(varl,var2,epsi,sigma_tot,n) %
% Simulate from the Gaussian mixture yA
% A
function [thx,thyl=sim_semigauss(a,b,varl,epsi,sigma_tot,n) %
% Simulate from the semi-Gaussian mixture )
% h
function [thx,thyl=sim_fewscatt(a,b,sigma,lambda,n) %
% Simulate multiple scattering by summing over single scatters %
% The multiplicity is Poisson distributed with mean lambda %
% sigma is the standard deviation of the single scatter h
% h
function [thx,thy]l=sim_singlescatt(a,b,n) )
% Simulate from the standardized single scattering density %
YA h

required parameters the methigslc X: : i ni t Me(. . ) has to be called{ = Si ngl e, Few, Sem Gauss,
GaussM x). MscX: : sinmul ate(..) triggers the simulation of the specific subclass in the same way as
Msc: : simul ate(..) does forthe automatically selected simulation model.

Uniformly distributed random numbers are drawn inside the subclasskbsafni t with the RandFl at
generator provided by the CLHEP [10] library.

7. Discussion

We have presented a complete mixture model of multiple scattering. The distribution of the projected scattering
angle is approximated by a Gaussian mixture for thick scatterers, and by a mixture of a Gaussian core and single
scattering tails for thin scatterers. In very thin scatterers, simulation is performed by adding single scatters, the
multiplicity being Poisson distributed. Implementations in MATLAB and C++ are available. By default, the model
is chosen automatically, based on the thickness of the scatterer; the user is free, however, to use the model of his
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MscParams Msc
PP MscUnit
@beti— ®getInstance() | N
ozca €— @simulate () ~” 1 n @initMe ()
@A_ @®addsimUnit () 1 : @takeMe ()
‘?Z_ ‘configure() @simulate ()
¢o— %chooseUnit () A

T
MscSemiGauss || MscSingle MscFew MscGaussMix
%initMe () ®initMe () ®initMe () ®initMe ()
StakeMe () dtakeMe () $takeMe () YtakeMe ()
@simulate () %simulate () ¥simulate () @simulate ()

245

Fig. 10. UML class diagram of the C++ implementation. Cld&s acts as a singleton interface for the user and implements a bridge
to the simulation unitVscUni t . A list of instances of different simulation models subclassed fiddeUni t (MscSi ngl e, - Few,

- Sem Gauss, -GaussM x) is managed bywsc. Depending on the parameters providedMecPar ans the polymorphic method
MscUni t::takeMe(..) decides in each subclass if the specific model should be chbsen.: confi gure(..) takes an instance

of MscPar amand calls each : t akeMe(..) to choose the appropriate mod#ékc: : si mul at e delegates the simulation task to the
chosen model.

Table 5
Usage of the C++ implementation

[k Kok ok ok ok Kok ok ok ok ok o ok ok ok o sk ok ok ok K ok ok sk ok ok ok ok ok ok ok okok Kok ok kK Kok ok ok Kok kR Kok

// beta=1.v/c, p = 2.GeV/c , d=0.1 d/Xo , Z=6, A=12.01 //
// optional scale factor can be given as last argument //
// to the constructor to adjust the total standard //
// deviation of the coosen distribution. By default //
// the scale factor is 1. //
MscParams thePara(i., 2., 0.1, 6, 12.01); //
// instantiate the Msc user-interface //
Msc * simInterface = Msc::getInstance(); //
// automatically select simulation model //
simInterface->configure(thePara); //
// simulate two scattering angles in orthogonal projections //
// result saved in vector thx and thy of specified size //
int n(10000) // size of vectors //
vector<double> thx(n); //
vector<double> thy(n); //
simInterface->simulate (thx,thy); //

/*************************************************************/

choice. Using only the Gaussian core of the mixture gives results which are very similar to the ones by using the
Highland model, as shown in [1].

The model is restricted to the simulation of projected scattering angles and does not deal with the lateral
displacements of the scattered particles. In any case, the lateral displacements are entirely negligible for thin
scatterers. If lateral displacements are significant, we recommend to divide the scatterer into several thinner slices
and to integrate the lateral displacements induced by the angular deflections. This produces the correct correlations
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with the angles, and has the additional advantage that other processes like energy loss can be taken into account
more frequently and thus with higher accuracy.
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