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Abstract

We review the modelling of multiple Coulomb scattering by Gaussian and semi-Gaussian mixtures. We give explicit formulas
for the computation of the mixture models and for the simulation from the models. We verify the convolution property of the
model and compare it to GEANT4. Finally we present implementations in MATLAB and C++. 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Precise modelling of multiple Coulomb scattering (MS) requires an adequate representation of the tails. The tails
are most prominent in thin scatterers but persist also in thicker scatterers, up to about a radiation length. In two
previous publications mixture models have been described which represent the core of the projected distribution
by a Gaussian and the tails either by a Gaussian [1] or by a scaled single scattering density [2]. The semi-Gaussian
mixture is most suitable for the simulation of MS in thin scatterers, whereas the purely Gaussian mixture is suitable
for simulation in thick scatterers and for use in track reconstruction [3]. The distinction between “thin” and “thick”
scatterers is based on the approximation quality of the respective models.

We first review the two mixture models and summarize the computation of the mixture parameters. We then
discuss the simulation from the models. As we focus on MS distributions far from the Gaussian limit, the
projected scattering angles cannot assumed to be independent; they are, however, uncorrelated because of azimuthal
symmetry if the projections are made on two orthogonal planes intersecting along the direction of the particle. In
order to get the correct dependency structure of the projected angles the simulation has to be done in space. We
derive the corresponding mixture models in space and give explicit formulas for generating random angles both in
space and in the projections.
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The projected scattering angles should have the convolution property, i.e. their distribution should be independent
of the number of steps taken in the scatterer. It is shown empirically that our model fulfills this requirement to very
good precision. The model is also compared to the one employed by the GEANT4 simulation package. Finally, we
describe the implementation of the model in MATLAB and in C++.

2. The mixture models

2.1. Physics background

In the following we always assume that the scattering angles are sufficiently small so that the projected angles can
be added. Under this assumption the projected MS distributions can be obtained by repeated numerical convolution
of the projected single scattering distribution. The results of this procedure have been described in detail in two
previous publications [1,2]. It should be noted that the scattering angles in space cannot be added.

Using the differential cross section of elastic Coulomb scattering as given in [4], the density of the scattering
angleθ in space is given by

f (θ)= 2a2θ

(θ2 + a2)2
· I[0,b](θ) (1)

where we have assumedθ � 1. The parametersa andb are the minimum and the maximum scattering angle,
respectively [4]:
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The shape of the cutoff atθ = b is largely irrelevant; for the sake of simplicity we have used a sharp cutoff.
From the density in Eq. (1) the density of the projected single scattering angleθx can be derived [1]:
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Obviously botha andb depend on the material of the scatterer. If the distribution is standardized (σ = 1) the central
part is nearly independent of the material, the main difference being the range of the tails (Fig. 1).

The projected MS densities can then be obtained by repeated convolutions of the projected single scattering
densities. A couple of them are shown in Fig. 2.

In practice the average numberN of scattering processes has to be related to the material and to the thickness of
the scatterer. Assume thatd is the thickness of the scatterer andX0 is its radiation length, whered andX0 are both
given either in g/cm2 or in cm. Letd ′ = d/X0. Then

N(d)= d N0

X0
= d ′N0 ≈ d ′ · 1.587· 107 ·Z1/3

β2(Z+ 1) ln(287Z−1/2)
≈ d · 2.215· 104 ·Z4/3

β2A
, (4)

whereN0 is the average number of scattering processes per radiation length,Z is the charge of the nucleus,A is
the atomic mass number of the material andβ = v/c is related to the velocity of the scattered particle [1]. We also
assume that the scattered particle has unit charge.

In what follows, all approximating mixtures are given in standard measure. The mixture has therefore to be
scaled with the total standard deviationσT(θx |d) of the projected MS distribution [5]:

σT(θx |d)= 0.015

βp

√
d

X0
, (5)
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Fig. 1. The probability density function of the projected single scattering angle in standard measure. Top: central part on a linear scale, bottom:
entire distribution on a logarithmic scale.

wherep is the momentum of the scattered particle in GeV/c. In the implementation described below, an additional
scale factor allows fine-tuning of the width by the user.

2.2. The semi-Gaussian mixture

We shall see below that in thin scatterers a Gaussian mixture is but a poor approximation to the MS distribution.
For simulation purposes we propose to use a mixture with a Gaussian core and non-Gaussian tails [2]:

f (θx)= (1− ε) · ϕ(θx;0, σ 2) + ε · g(θx;a, b), (6)
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Fig. 2. Probability density functions of the projected MS angle in carbon, forN single scatters (N = 2n, n = 0,3,6, . . . ,21,24). The dashed
line in the bottom figure is the density of a standard Gaussian. All densities are in standard measure.

whereϕ(θx;0, σ 2) is the Gaussian density with mean 0 and varianceσ 2, andg(θx;a, b) is the density of the
projected single scattering angle (see Eq. (3)).

This mixture model has four free parameters (a, b, ε, σ 2). In standard measure the tail weightε can be expressed
in terms ofa, b, andσ 2:

ε = max

(
0,

1− σ 2

a2[ln(b/a)− 0.5] − σ 2

)
. (7)

Above a certain thickness of the scatterer this mixture model is no longer appropriate, andε would become negative.
In this case it is set to 0. If this happens, the Gaussian mixture model should be used instead.

The parameterb can be approximated by

b = �√
N(ln�− 0.5)

, with �= b

a
≈ 41000

Z2/3
. (8)
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A nearly material-independent representation in the required range can be achieved if the core varianceσ 2 and
the tail parametera are considered as functions ofn = Z0.1 lnN , whereN is the average number of scattering
processes (see Eq. (4)). In [2] a polynomial approximation of degree 2 and 4, respectively, has been obtained:

σ 2 = 1.827· 10−1 + 3.803· 10−2 · n+ 5.783· 10−4 · n2, (9)

a = 2.822· 10−1 + 9.828· 10−2 · n− 1.355· 10−2 · n2 + 1.330· 10−3 · n3 − 4.590· 10−5 · n4. (10)

2.3. The Gaussian mixture

The purely Gaussian mixture used in [1] has the form

f (θx)= (1− ε) · ϕ(θx;0, σ1
2) + ε · ϕ(θx;0, σ2

2), (11)

whereσ1
2 < σ2

2 and ε < 0.5. The core varianceσ1
2 is parameterized in terms of the reduced thicknessd ′

0 =
d/β2X0, whereX0 is the radiation length of the scatterer:
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2 = 8.471· 10−1 + 3.347· 10−2 · lnd ′

0 − 1.843· 10−3 · (ln d ′
0

)2
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The tail weightε is parameterized in terms of a modified reduced thicknessd ′′
0 =Z2/3d/β2X0:
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(13)

As the mixture is in standard measure the tail variance can be computed by

σ2
2 = 1− (1− ε)σ1

2

ε
. (14)

If d/β2X0 is larger than 10, the tail component of the Gaussian mixture is negligible, and a single Gaussian is
sufficient.

2.4. Comparison with the actual distributions

The quality of the approximation can be assessed by the Kullback–Leibler divergenceD(f ||h) of the mixture
f (θx) from the actual MS densityh(θx) as obtained by convolution:

D(f ||h)=
∫
f (θx) ln

(
f (θx)/h(θx)

)
dθx. (15)

Fig. 3 shows the Kullback–Leibler divergence of the semi-Gaussian mixture (6), the Gaussian mixture (11), and
the Gaussian approximation with the Highland formula [6,7]. It can be seen that the Gaussian mixture is always
better than the purely Gaussian model, and that below a certain thickness the semi-Gaussian mixture is better than
the Gaussian mixture. The point of crossover can be parameterized byd/β2X0 = 0.6/Z0.6.

Figs. 4 and 5 show the actual and the model densities for some values ofd/X0. We assume here and in what
follows thatβ = 1. It is obvious that for thin scatterers the purely Gaussian mixture is a poor approximation to the
actual distribution, whereas the semi-Gaussian mixture fits almost perfectly.

3. Simulation

If θ is the MS angle in space, the projected MS anglesθx = θ cosϕ andθy = θ sinϕ are always uncorrelated,
because of the azimuthal symmetry. They are, however, not independent, except in the Gaussian limit where their
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Fig. 3. The Kullback–Leibler divergence of the two mixture models and the Gaussian model due to Highland, as a function of the number of
radiation lengths traversed. The vertical line shows the point of crossover between the mixture models.

joint distribution is a two-dimensional Gaussian. In order to get the correct dependency structure when simulating
pairs of projected scattering angles, one has to go back to the spatial scattering angleθ . Although the distribution of
θ = (θ2

x + θ2
y )

1/2 is in general not uniquely determined by the projected distributions ofθx andθy , it is not difficult
to find a plausible mixture density ofθ which has the desired projected mixture densities ofθx andθy .

3.1. Simulation from the single scattering distribution

In very thin layers the best precision is obtained when multiple scattering is simulated by summing over a random
number of single scatters, the number being distributed according to a Poisson distribution. We propose to apply
this procedure whenever the average number of scatters is below 10. The single scattering angle in spaceθ has the
density given in Eq. (1) and is generated according to the formula

θ = ab
√

1− u
ub2 + a2

, (16)

whereu is uniformly distributed in [0,1] anda, b are determined according to Eq. (2). The azimuthϕ is drawn
from a uniform distribution in[0,2π], independently ofu.
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Fig. 4. The probability density function of the projected MS angle in silicon obtained by convolution (solid line), the semi-Gaussian mixture
model (dashed line), the Gaussian mixture model (dotted line), and the Gaussian model due to Highland (dashed-dotted line). All densities are
standardized.

3.2. Simulation from the semi-Gaussian mixture

It can easily be shown that the following mixture model of the distribution ofθ yields projected densities of the
desired form (6):

f (θ)= (1− ε) · θ exp(−θ2/2σ 2)

σ 2
+ ε · 2a2θ

(θ2 + a2)2
· I[0,b](θ), (17)
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Fig. 5. The probability density function of the projected MS angle in silicon obtained by convolution (solid line), the semi-Gaussian mixture
model (dashed line), the Gaussian mixture model (dotted line), and the Gaussian model due to Highland (dashed-dotted line). All densities are
standardized.

where the second component is the density of the single scattering angle in space (Eq. (1)). Drawing a random
number from the distribution with density (17) is accomplished in the following way:

θ =



σ
√−2 lnu if v > ε,

ab

√
1− u
ub2 + a2 if v < ε,

(18)

whereu and v are independent and uniformly distributed in [0,1]. The azimuthϕ is drawn from a uniform
distribution in[0,2π], independently ofu andv.
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3.3. Simulation from the Gaussian mixture

The following mixture model of the distribution ofθ yields projected mixture densities of the desired form (11):

f (θ)= (1− ε) · θ exp(−θ2/2σ1
2)

σ1
2

+ ε · θ exp(−θ2/2σ2
2)

σ2
2

. (19)

Drawing a random number from the distribution with density (19) is accomplished in the following way:

θ =
{
σ1

√−2 lnu if v > ε,

σ2
√−2 lnu if v < ε,

(20)

whereu and v are independent and uniformly distributed in [0,1]. The azimuthϕ is drawn from a uniform
distribution in[0,2π], independently ofu andv.

Fig. 6. The probability density function of the projected MS angle in a silicon scatterer of thicknessd (solid line) and the frequency distributions
of simulated samples obtained by dividing the scatterer inton slices (n= 1: circles,n= 10: triangles,n= 100: squares).
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4. The convolution property

A statistical model of multiple scattering in a projection should have the convolution property: The scattering
angle induced by a scatterer of thicknessd should have the same distribution as the convolution ofn scattering
angles induced byn contiguous scatterers of thicknessd/n each. In a simulation program the lack of the
convolution property could lead to some unpleasant surprises. The convolution property is trivially fulfilled by
the Gaussian model if the variance is strictly proportional to the thicknessd . In the Highland model [6,7] the
convolution property is violated, albeit to a fairly small degree. If we consider, for instance, a scatterer with a
thickness of 0.1 radiation lengths, the variance of the projected scattering angle according to Highland is equal to
σ 2 = 15.4/(pβ)2, p being given in MeV/c. If the same scatterer is considered as an assembly of ten scatterers of

Fig. 7. The probability density function of the projected MS angle in three scatterers of thicknessd = X0 (our model, solid line), and the
frequency distributions of simulated GEANT4 samples obtained by dividing the scatterer inton slices (n = 1: circles,n = 10: triangles,
n= 100: squares).
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0.01 radiation lengths each, the variances sum up toσ 2 = 12.6/(pβ)2 or about 82 percent of the value above. This
reflects the fact that the Highland model deliberately neglects the tails and models only the width of the Gaussian
core. This feature of the Highland model has been our initial motivation to look for models with strictly additive
variances which nevertheless reproduce the width of the core.

As our model is a rather simple approximation to the actual distributions we cannot expect that the convolution
property holds precisely as far as the shape of the distributions is concerned, although the model is constructed
such that the variances are always additive. We can, however, check empirically to which degree the shape of
the distribution obeys the convolution property. We give a few examples with silicon scatterers. Fig. 6 shows the
mixture density of the projected scattering angle after 1 percent, 10 percent and 100 percent of a radiation length in
silicon, the distribution of the corresponding simulated sample, and the distributions of simulated samples obtained
by dividing the scatterer into 10 and 100 slices, respectively. The agreement is excellent, both in the Gaussian core
and in the tails.

Fig. 8. The probability density function of the projected MS angle in a silicon scatterer of thicknessd (our model, solid line) and the frequency
distributions of simulated GEANT4 samples (circles). Ford =X0, the scatterer has been divided into 10 slices.
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Fig. 9. The probability density function of the projected MS angle in a scatterer of thicknessd (our model, solid line) and the frequency
distributions of simulated GEANT4 samples (circles). The material is carbon (left hand side) and lead (right hand side).

Table 1
Comparison of computation time between MATLAB and C++

Model d/X0 C++ [sec] MATLAB [sec] MATLAB/C++

GaussMix 2 16.4 44.2 2.7

SemiGauss 1· 10−4 15.7 47.9 3.1

FewScatta (N = 8.6) 1· 10−5 105.4 535.3 5.1

FewScatt (N = 4.3) 5· 10−6 56.7 279.3 4.9

FewScatt (N = 0.86) 1· 10−6 17.2 92.0 5.3
aSimulation by summing over a Poisson distributed number of single scatters.
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5. Comparison with GEANT4

In this section we compare our model with the distributions produced by GEANT4 [8], which is a very general
simulation program widely used in high-energy and nuclear physics. Version GEANT4.2.0.ref03 was used to
produce the results presented here. No significant differences in the general behaviour of the GEANT4 multiple
scattering model were found when comparing selected results with the latest available version GEANT4.3.1.

The comparison is complicated by the fact that the model currently employed by GEANT4 lacks the convolution
property. As an example, Fig. 7 shows the frequency distributions of the simulated projected scattering angle after
a radiation length of material, the material being divided into 1, 10, and 100 slices. They exhibit discrepancies both
in the core and in the tails of the distribution. Neither of them agrees extremely well with our model. For carbon
and silicon, the best agreement is forn= 10, while for iron it is best forn= 100.

Fig. 8 shows a comparison of our model with the GEANT4 simulations, over a wide range of the thickness of the
scatterer. The material is silicon. The agreement is good for scatterers thicker than about one percent of a radiation
length, and is somewhat worse for thinner scatterers. Ford =X0, we have chosen the sample withn= 10 slices in
order to get better agreement. Fig. 9 shows more comparisons, the material being carbon and lead. The agreement
is rather good for carbon, and clearly worse for lead.

Figs. 8 and 9 also show that in GEANT4 the shape of the distribution changes very little with the thickness of
the scatterer, whereas in our model the change is much more pronounced. This, in conjunction with the fact that the
GEANT4 model lacks the convolution property, leads us to suspect that the current GEANT4 model is still capable
of improvement.

6. Implementation

We have implemented the model in MATLAB [9] and C++. Although the C++ version was not designed for
numerically optimal performance, it is still faster than the vectorized MATLAB version by a factor between 3
and 5. Table 1 shows a speed comparison between the two implementations.

The simulations were carried out on a Pentium III 600 MHz PC, with MATLAB 5.3 running under Windows
NT 4.0, and the C++ implementation compiled with GNU egcs-2.91.66 and running under Linux Redhat 6.1. We
have simulated 107 events for 1 GeV/c muons in carbon varying the thickness in order to trigger different models.

We now give a brief description of both versions. The source code is available from the authors on request.

6.1. MATLAB version

There are two main functions which compute the mixture density and generate scattering angles, respectively.
In both functions the scale factorscale can be used to adjust the standard deviation of the distribution. It should
be set to 1 if no scaling is required.

The mixture density can be computed by calling the functionget_density. The calling sequence and the
explanation of the input and output parameters is shown in Table 2.

Two vectors of projected scattering angles can be generated by calling the functionsim_mixture, described
in Table 3.

In addition to the two main functions, there is a set of internal functions which are called by the two main
functions, but can also be called by the user (Table 4).

Note that the functionsgaussmix_pdf andsemigauss_pdf return the standardized probability density
function which has to be scaled bysigma_tot. All functions sim_* internally call the MATLAB function
rand which produces uniform random number in the interval[0,1].
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Table 2
The MATLAB functionget_density

Table 3
The MATLAB functionsim_mixture

6.2. C++ version

An UML diagram of the class design is shown in Fig. 10. The classMsc serves as an interface to
the user. The required simulation parameters have to be filled intoMscParams. According to the given
parameters the methodMsc::configure(..) selects the appropriate multiple-scattering model automatically.
A manual selection is, however, always possible through a call toMsc::chooseUnit(..). The method
Msc::simulate(thx,thy) triggers the actual simulation ofn pairs of projected scattering angles, where
n is the size ofthx, and stores them in the vectorsthx andthy, respectively. The code snippet in Table 5
illustrates the usage of the C++ implementation.

Each multiple scattering model is implemented as a subclass ofMscUnit. The subclassesMscSingle,
MscFew, MscSemiGauss, MscGaussMix correspond to their MATLAB counterpartssim_single-
scatt, sim_fewscatt and so on, and can be used directly without theMsc interface class. In order to set the
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Table 4
Other MATLAB functions

required parameters the methodMscX::initMe(..) has to be called (X = Single, Few, SemiGauss,
GaussMix). MscX::simulate(..) triggers the simulation of the specific subclass in the same way as
Msc::simulate(..) does for the automatically selected simulation model.

Uniformly distributed random numbers are drawn inside the subclasses ofMscUnit with the RandFlat
generator provided by the CLHEP [10] library.

7. Discussion

We have presented a complete mixture model of multiple scattering. The distribution of the projected scattering
angle is approximated by a Gaussian mixture for thick scatterers, and by a mixture of a Gaussian core and single
scattering tails for thin scatterers. In very thin scatterers, simulation is performed by adding single scatters, the
multiplicity being Poisson distributed. Implementations in MATLAB and C++ are available. By default, the model
is chosen automatically, based on the thickness of the scatterer; the user is free, however, to use the model of his
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Fig. 10. UML class diagram of the C++ implementation. ClassMsc acts as a singleton interface for the user and implements a bridge
to the simulation unitMscUnit. A list of instances of different simulation models subclassed fromMscUnit (MscSingle, -Few,
-SemiGauss, -GaussMix) is managed byMsc. Depending on the parameters provided inMscParams the polymorphic method
MscUnit::takeMe(..) decides in each subclass if the specific model should be chosen.Msc::configure(..) takes an instance
of MscParam and calls each::takeMe(..) to choose the appropriate model.Msc::simulate delegates the simulation task to the
chosen model.

Table 5
Usage of the C++ implementation

choice. Using only the Gaussian core of the mixture gives results which are very similar to the ones by using the
Highland model, as shown in [1].

The model is restricted to the simulation of projected scattering angles and does not deal with the lateral
displacements of the scattered particles. In any case, the lateral displacements are entirely negligible for thin
scatterers. If lateral displacements are significant, we recommend to divide the scatterer into several thinner slices
and to integrate the lateral displacements induced by the angular deflections. This produces the correct correlations
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with the angles, and has the additional advantage that other processes like energy loss can be taken into account
more frequently and thus with higher accuracy.
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