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Abstract

An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the
Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model
has been coded in the C++ programming language and has been successfully implemented into the OO computing environments
of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN.

We shall report:
(1) how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction

aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS);
(2) how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating

the ease of re-use of OO program);
(3) what are the OO model’s performance, including execution time, memory usage, track finding efficiency and ghost rate,

etc.; and
(4) additional physics performance based on use of the OO tracking model.

We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO
software framework of the experiments. In summary, our practice shows that the OO technology really makes the software
development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-
computer-professional physicists. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nowadays, Object Oriented (OO) technology has
become more and more popular in the computing of
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high energy and nuclear physics. Here we describe
an OO model [1] for track reconstruction with simul-
taneous pattern recognition and track fitting by the
Kalman filtering method. It was initially designed us-
ing the Booch methodology and coded in the C++ pro-
gramming language in its first version in 1995 for the
CMS experiment [2] at Large Hadron Collider (LHC)
at CERN. After the C++ Standard Template Library
(STL) became available, the model was re-designed
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at the beginning of 1996 in order to take advantage
of the container classes provided by STL. In the fall
of 1997, another partial re-design in the OO model
was undertaken by introducing an abstract class that
clarified and simplified the code. Since 1998 the OO
model and C++ code has been successfully re-used,
with only minor modification, in ATLAS [3], another
major LHC experiment. This demonstrates one of the
claimed advantages of the OO technique: ease of re-
use. Here, the “re-use” is not only for just some partic-
ular classes, but also for the entire model. The modu-
larity enforced by the OO design of the model made
this re-use much easier, as the experiment-specific
code is very localized. The first 4 years of history of
the OO model (up to 4/1999) has been documented
in [1,4].

The original OO model was stand alone, as it
predated the development of full reconstruction and
analysis frameworks in both experiments. During
1999 CMS developed a powerful OO reconstruction
framework known as ORCA (Object oriented Recon-
struction for CMS Analysis). After all necessary func-
tionality for input objects in ORCA became standard-
ized in autumn of 1999, we integrated the OO tracker
model into ORCA by inputting the ORCA recon-
structed hits to the model and reconstructing tracks.
ORCA is continuing to develop rapidly, and complete
integration of the OO model will be done using the fi-
nal ORCA detector and track classes. Also in 1999,
the OO model has been implemented in the OO ref-
erence software framework of ATLAS level-2 trig-
ger [5]. Again, the two implementations (into differ-
ent OO environments) have shown a certain degree of
similarity. As a consequence, any improvement in the
code and any experience in the implementation to the
general OO environment for one experiment immedi-
ately benefit other experiment.

In this report, the history of the OO model for
track reconstruction and C++ coding up to 4/1999 are
summarized in Section 2; the new developments of
the OO model and its implementations in the CMS
and ATLAS experiments are explained in Section 3;
some preliminary performance results are shown in
Section 4; the experience and lessons we have learned
are list in Section 5; and a summary and future
prospects are given in Section 6.

2. Review of the OO model and C++ coding

Following the trend in the High Energy Physics
(HEP) community to gradually move from the pro-
cedure oriented to the Object Oriented Programming
(OOP), we have tried to design an OO model by us-
ing well known HEP data concepts to form classes,
then grouping the relevant services for those data into
those classes (i.e. class abstraction). Meanwhile, we
have also paid attention to implement some of the
other main features of OOP (such as inheritance and
polymorphism) in this model. During the model de-
sign stage, we found that some member functions
in some classes have the corresponding FORTRAN
subroutines in the already existing Kalman filtering
track reconstruction package [6] of the then CMSIM
(CMS simulation and reconstruction facility). Those
subroutines are highly modular and do not have any
common blocks interface with the outside world. We
had successfully re-used those subroutines as mem-
ber functions of various classes, which account for
about 30% of total lines of code in the OO model
and enable us to concentrate our effort on the OO
and C++ aspects of model in the first 4 years of de-
velopment. Until 3/1999, when the model was suffi-
ciently mature, the highly modular FORTRAN code
had been converted to C++ in a straightforward man-
ner, with the aid of the UNIX utility “f2c”. Since
then, all further development in the model has been
with the pure C++ version. Nevertheless, the tem-
porary use of legacy FORTRAN in member func-
tions of certain classes greatly increased the devel-
opment speed of the initial prototype versions of the
model.

The model design was started by formulating a
“problem statement”, which guides the design of the
class diagram (Fig. 1) drawn here by the commer-
cial product Rational/Rose using the Booch methodol-
ogy [7]. A “function statement” serves as a guideline
for drawing the object (Fig. 2) and the message trace
diagrams. The details of the model and class descrip-
tion can be found in [1] and are downloadable from
the Web [4].

The first few versions of the model were rather
messy, partly due to the confusion engendered by
mixing the implementation details of container classes
with the class definitions. Since December 1995, we
started to investigate the utilization of the Standard
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Fig. 1. Class diagram of the OO Tracker model.

Template Library (STL) [8]. It turned out that STL
is indeed a powerful tool, not only for the C++
programming, but is also helpful for the OO model
design. Some list-type classes representing vectors and
linked lists (see Fig. 1 of [1]) in the first few versions
of the OO model have now been absorbed into relevant

classes by using STL containers, resulting in a much
cleaner and simplified class diagram (Fig. 1).

In addition, the STL not only helped us to simplify
the model design; it also helped us in the implementa-
tion of variable length arrays and linked lists in the
main program. Various types of STL iterators were
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Fig. 2. Object diagram for scenario 1 (left) and scenario 2 (right).

particularly useful, as the STL iterator concept is well
matched to looping through lists (vectors) of hits and
track candidates. The flexibility and ease of use of STL
proved a great asset to this OO model.

While the work evolved, the C++ code had become
more and more complex since functionality was added
to deal with various circumstances; the main program
had grown to a length of a few hundred lines. After
carefully examining the structure of the main program,
we realized that the main program could be modular-
ized as several separate pieces, and that each piece
could form a member function of an abstract class.
Then we re-named the “Tracker” class of Fig. 1a of
the first article of Ref. [1] to “Track builder” class
with those additional member functions. As a result,
the main program for the OO model was reduced to a
very terse one with merely dozens of essential lines.
The successful modularization of those new member
functions also made the debugging more effective by
isolating bugs in different modules. This track builder
class is perhaps unnatural to more traditional proce-
dure oriented programmers (as opposed to more con-
ventional track and hit classes that correspond directly
to actual physical objects). Nevertheless, it proved an
important design element in moving towards a truly
object oriented model structure.

Since the end of 1997, the OO model has been
ported into the environment of another major LHC ex-
periment, ATLAS. Interestingly, the port did not in-

volve merely the reuse of some of the classes origi-
nally designed for the CMS implementation. Rather,
we found that the model, with a modular design en-
forced by use of the OO methodology, was able to be
used almost in its entirety, with changes between the
CMS and ATLAS implementations confined to a small
number of well defined areas (e.g., the input and out-
put interfaces).

The primary intention of this model in ATLAS is
to reconstruct tracks in the SemiConductor Tracker
(SCT, including the pixel detector) for the level-2
trigger software. During the low luminosity operation
period of LHC the level-2 B-physics trigger will
only have about milliseconds available for processing.
Thus, the execution speed is a major factor of concern
for any trigger track reconstruction model. Several
measures have been taken to increase the execution
speed in this OO model, e.g., to increase the hit
selection efficiency by a “circular iterator”, to reduce
the number of initial triplet seeds used to instantiate
candidate tracks, and to investigate various seeding
methods.

3. Implementations of the OO model in CMS and
ATLAS

The layouts of ATLAS and CMS inner trackers
are shown in Figs. 3 and 4. Though the technical
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Fig. 3. Layout of the ATLAS Tracker.

Fig. 4. Layout of the CMS Tracker (before it was changed to the full silicon version from the beginning of 2000).

details of the two trackers are quite different, they are
essentially the same from point of view of the software
implementation, i.e. they both consist of several layers
of detector. This is one of the reasons that this OO
model can be easily re-used in different experiments
without major modification (i.e. by only instantiating
different layer classes).

However, the implementation of the model into
different experiments can be very different. This is
mainly an I/O issue. For instance, in CMS, we need
to read input hits from CMSIM output, then store
the output back to CMSIM data system; whereas in
ATLAS, we input hits by reading ASCII files from the

ATLAS trigger simulation and store the reconstructed
tracks into ATLAS database. For simplicity, at the
early stage of the stand-alone OO model development,
we temporarily dumped the CMSIM data into an
ASCII file; then re-formatted it to feed the model. Now
we are using the I/O scheme of ORCA. For the latest
ATLAS implementation, we have to plug the model
into the OO reference software framework of level-2
trigger [5] with yet another different I/O scheme.

Another major difference between the two imple-
mentations in CMS and ATLAS is due to the purpose
of the application. In CMS, we intend to apply it in
offline track reconstruction where the completeness,
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accuracy and high efficiency are emphasized. There-
fore, we use the first scenario (Fig. 2(a)) of this OO
model’s object diagram to search for tracks through-
out the tracker without using outside seeds (although
in principle, the outside seeds also can be used in fu-
ture to find an initial set of tracks). Whereas in the
ATLAS trigger application, the speed and efficiency
are more important, so we use the Transition Radia-
tion Tracker (TRT)’s output as the seeds and perform
the track reconstruction within each Region of Inter-
est (RoI) by invoking the second scenario (Fig. 2(b)).
Since each event only has a limited number of RoI in
the LHC low-luminosity operation period and since
the most time-consuming part (i.e. triplet formation)
of the model is eliminated, the OO model can perform
closer to the speed requirement of level-2 B-physics
trigger. Recently, another seeding method using the
seeds produced by a pixel reconstruction package, and
starting the Kalman filtering process from inner-most
position outwards has been implemented. This results
in a better performance of the OO model due to the
preciseness of the pixel hits. For the 2nd scenario, the
performance of the OO model depends critically on
the quality of the seeds; therefore, more seeding meth-
ods will be tested in order to achieve the optimum per-
formance.

Despite the above differences between the two ex-
periments, we could put the I/O code in two encapsu-
lated functions, then the implementation structures for
both experiments are very similar.

4. Preliminary performance result

For the performance of the OO model, the ATLAS
implementation has been tested extensively by using
trigger simulation data as input. The standard data
sets (for testing various algorithms) are single track
(µ’s, π ’s and electrons at different energies) events
and B-physics events at low luminosity. The computer
used is a 300 MHz Pentium II under Linux. Here, we
only show a few typical results about the efficiency
(Figs. 5 and 6), momentum resolution (Fig. 7), energy
loss correction for electrons (Fig. 8), execution speed
(Table 1) and ghost reduction (Table 2). Fig. 9 is an
example of B-physics study in the channel B→ ππ .
Many more results are described on Web site [9].
A very recent documentation “ATLAS High-level
Triggers, DAQ and DCS Technical Proposal” [10] and
one [11] of its backup notes include the most updated
performance result by using the OO model.

Fig. 5. Efficiencies vs. pseudo-rapidity for muons (left) and electrons (right) at different momentum of 1 (top), 5 (middle) and 20 (bottom)
GeV/c.
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Fig. 6. Efficiencies vs. pseudo-rapidity (left) and vs. transverse momentum (right) for B-physics events.

Fig. 7. Resolutions of 1/pT (left) and impact parameter d0 (right) for 20 GeV muons.

Table 1
Statistics of the benchmarking measurement

Data set Execution time per event TRT seeds per event Average execution
(millisecond) time per TRT seed

min. max. average min. max. average (millisecond)

Electron without pile-up 1.2 5.6 ∼〈1.9〉 1 3 ∼〈1.55〉 ∼〈1.8〉
Dijet without pile-up 0.8 109 ∼〈5.3〉 1 14 ∼〈2.21〉 ∼〈2.6〉
B-physics at low luminosity 7.6 3544 ∼〈172〉 2 493 ∼〈53.3〉 ∼〈2.6〉
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Table 2
Statistical results for the standard data sets (for barrel region only, i.e.|η| < 0.65)

Data set Total number of events Extra TRT tracks Extra SCT/Pixel tracks*

5 GeVµ 4737 111 (2.3%) 0

1 GeVµ 4770 56 (1.2%) 0

5 GeV e 526 167 (32%) 11 (2.1%)

1 GeV e 1293 324 (25%) 1 (<0.1%)

5 GeVπ 4331 1254 (29%) 86 (2.0%)

1 GeVπ 4720 429 (9.1%) 6 (0.13%)

* The right-most column is the result of this OO model applied in ATLAS inner SCT/Pixel tracker.

Fig. 8. Energy loss correction for electrons.

The memory usage of the model is in the or-

der of 10 MByte, which also depends on the data

volume of the event, with high luminosity events

occupying more memory than the low luminosity

ones.

5. Experience and lessons learned with this OO
model

During the practice of OO analysis, OO design and
C++ coding stages as well as several cycles of re-
design in last 5 years, we feel that
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Fig. 9. Reconstruction of the B→ ππ mass hypothesis in the
ATLAS Level-2 trigger by using the Kalman filtering method.

(a) The transition from procedure oriented program-
ming to OOP is quite natural and straightforward,
partially since the syntax of FORTRAN and C++
have some similarity and correspondence.

(b) The user-defined data types (to form the classes)
are extremely powerful, encapsulating the behav-
iour of classes makes it easy to use other classes
without interfering with each other.

(c) STL provides powerful tools well matched to HEP
needs (e.g., iterators, sorting algorithms, etc.).

C++ has some new features (which were unfamiliar
to us as previous FORTRAN programmers and some-
how frustrated us), e.g., pointers, scoping rules, mem-
ory leaks, etc. But with some powerful debugging soft-
ware tools that have gradually become available dur-
ing the last few years, the new features can now be
handled. For example, the memory leak problem now
can be detected by INSURE++ (a product of Para-
Soft); the bugs related with pointers can be detected
by a graphic debugger DDD (Data Display Debugger,
a product of Technical University of Braunschweig).

Regarding to the integration of the OO model into a
general OO environment of the whole experiment, we
feel that it is essential for the successful integration
by having a stable general framework with a stable
interface. As soon as all functionality of I/O objects
needed by the OO model are available, the integration
is very straightforward.

In summary, our experience has been:
• Object Orientation makes it easier to do cooperative

development among widely separated collaborators,
and promotes truly modular designs.

• Object Orientation makes re-use easier, i.e. the de-
sign and code can be shared between different ex-
periments and have each almost immediate benefit
from development in the other experiment.

6. Summary and prospects

We have designed an object oriented model for track
reconstruction in HEP experiments, coded it in the
C++ programming language and preliminarily imple-
mented it into both the CMS and ATLAS experiments
on LHC. The main features of this model are:
• Class design is according to the OO paradigm and

is based on the proven data concepts in HEP track
reconstruction, so that hopefully it can be easily
adopted by the non-expert class users.

• The OO model is closely related to the Kalman fil-
tering track reconstruction package of the previous
pure FORTRAN version. Many FORTRAN subrou-
tines of the package have been originally re-used as
member functions of various classes, and later con-
verted into C++ in a straightforward manner.

• The STL, a powerful tool in C++ programming, has
been extensively used in the OO model design and
the C++ coding.

• The OO model is flexible enough to be re-used in
multiple HEP experiments, with only the imple-
mentation of layer class different.
The preliminary results show that its memory usage

is moderate, its track finding efficiency is satisfactory
and its execution speed is approaching the requirement
of level-2 trigger. We now have some powerful C++
debugging tools on hand, which will be very helpful
for future development.

Next, for the CMS implementation, we will com-
plete its integration into ORCA by investigating more
efficient I/O functions, use the standard CMS classes,
and then tune the performance. For ATLAS, we
can improve the performance by investigating new
seeding methods and exploring new reconstruction
strategies. More sophisticated corrections (e.g., non-
uniform magnetic field correction, etc.) can be grad-
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ually considered after a recently implemented energy
loss correction for electrons.

More details of this OO model and its implementa-
tion (including the model design, the class and object
diagrams, the performance results, the documentation
and the presentations in various conferences and meet-
ings, etc.) can be found on the Web site [4] which is
updated regularly to include all new developments.
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