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Particle tracks fitted on the Riemann sphere
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Abstract

We present a novel method of fitting trajectories of charged particles in high-energy physics particle detectors. The method
fits a circular arc to two-dimensional measurements by mapping the measurements onto the Riemann sphere and fitting a
plane to the transformed coordinates of the measurements. In this way, the non-linear task of circle fitting, which in general
requires the application of some iterative procedure, is turned into a linear problem which can be solved in a fast, direct and
non-iterative manner. We illustrate the usefulness of our approach by stating results from two simulation experiments of tracks
from the ATLAS Inner Detector Transition Radiation Tracker (TRT). The first experiment shows that with a significantly lower
execution time, the accuracy of the estimated track parameters is virtually as good as the accuracy obtained by applying an
optimal, non-linear least-squares procedure. The second experiment focuses on track parameter estimation in the presence of
ambiguous measurements. For this purpose, we have developed a new version of the Elastic Arms algorithm called the Elastic
Planes algorithm. The algorithm produces results which are almost identical to the results from an optimal version of the Elastic
Arms algorithm. The computational cost of our algorithm, however, is much lower. 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

The task of fitting circular arcs to a set of measure-
ments is of vital importance in high-energy physics
experiments. This is due to the fact that many of the
tracking systems in collider experiments are put into
relatively homogeneous magnetic fields, and the tra-
jectories of charged particles will therefore be helix
curves, or in the bending plane of the particles, circles.
Since the particle momenta are directly connected to
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the curvature of these circles, it is important to be able
to make reliable estimates of the circle parameters.

If the measurement errors can be adequately de-
scribed by a Gaussian noise model, the method of
least-squares is well-known to be the optimal one. For
circular arcs, however, it is in general not possible to
express the measurements as linear functions of the
parameters describing the circle. This means that the
simple and powerful tools of linear least-squares re-
gression not can be used directly, and one has to adopt
some strategy based on non-linear least-squares meth-
ods. Among the most popular of these are the Gauss–
Newton algorithm and the closely related Levenberg–
Marquardt algorithm. These basically work by ex-
panding the function describing the relation between
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the circle parameters and the measurements in a Tay-
lor series and collecting terms up to first order. This
enables the application of linear regression methods,
and the estimated parameters are used as a new expan-
sion point of the function. The procedure is repeated
until some convergence criterion is fulfilled. If there
are no local minima in parameter space, this method
will converge to the correct solution. However, due to
the iterative nature of the procedure the computational
cost can be quite large. In addition, one has to supply
the algorithm with an initial guess of the circle para-
meters, which means that some preprocessing of the
data has to be done.

A more simple and faster approach would be to go
through only one step in the above iteration procedure
and keep the outcome of the first step as the final
estimate of the parameters. The quality of the estimate
will of course depend strongly on the extent of which
it is justified to keep only the first order terms of
the series expansion. With a suitable choice of circle
parameters, this approximation can in fact be very
good. However, the initial guess of the parameters has
to be reasonably close to the correct values. The need
of preprocessing of the data is therefore still present.

We present in this paper a novel method of track
fitting based on mapping two-dimensional measure-
ments onto the Riemann sphere [1]. It is well known
from complex analysis that circles and lines in the
plane uniquely map onto circles on the Riemann
sphere [2]. Since a circle on the Riemann sphere
uniquely defines a plane in space, there is a one-to-one
correspondence between circles and lines in the plane
and planes in space. The problem of fitting measure-
ments to a circle in the plane is therefore changed into
the problem of fitting the transformed measurements
to a plane in space. This can be done in a fast and di-
rect way. In contrast to the Gauss–Newton method, our
algorithm does not require any iterations. There is also
no need for an initial guess of the track parameters,
something which enables our method to work without
any preprocessing of the data. This is in our opinion
a decisive advantage over all the methods mentioned
above.

We will by means of a simulation experiment
of tracks in the ATLAS Inner Detector TRT show
that our algorithm compares favourably with other
methods – such as a non-linear least-squares fit and
a linear, global least-squares fit – when it concerns

computational speed. The accuracy of the estimates
will also be shown to be negligibly worse than what
is achieved with an optimal, non-linear procedure.
Another experiment, which focuses on track fitting in
the presence of ambiguous measurements, requires the
use of sophisticated, adaptive methods as for instance
the Elastic Arms algorithm [3]. It has recently been
pointed out that the Elastic Arms algorithm can be
formulated as an iteratively reweighted least-squares
procedure [4]. We propose to do the fitting part of
this procedure on the Riemann sphere, and the novel
algorithm naturally arising from this idea will be
called the Elastic Planes algorithm. The algorithm will
be shown to be virtually as accurate as an optimal
version of the original Elastic Arms algorithm, and it
is significantly faster.

The paper will be organized as follows. In Section 2
we present the basic concepts of track fitting on the
Riemann sphere. We introduce in Section 3 some
modifications of the ideas from the original paper [1]
in order to optimize the performance of the algorithm.
The Elastic Planes algorithm is derived in Section 4. In
Section 5 we state results from the different simulation
experiments, and in Section 6 we draw conclusions
and give some ideas of possible future work.

2. Basic concepts of track fitting on the Riemann
sphere

A circle in the plane is in general described by a
set of three parameters. This can, for instance, be the
radius of curvatureρ and the Cartesian coordinates
(u0, v0) of the centre point. We assume that the points
P = {Pi} to be fitted are given in polar coordinates:
Pi = (Ri,φi), wherei = 1, . . . ,N . The transformation
formulas for a point(Ri,φi) in the plane to a point
(xi, yi, zi ) on the Riemann sphere4 are given by

xi =Ri cosφi/(1+R2
i ), (1)

yi =Ri sinφi/(1+R2
i ), (2)

zi =R2
i /(1+R2

i ). (3)

The transformed point can also be found in the follow-
ing way. Consider the straight line going throughPi =

4 The Riemann sphere has radius 1/2 and centre coordinates
(0,0,1/2). The north pole of the sphere is therefore in the point
(0,0,1), and the south pole is in(0,0,0).
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(Ri,φi) and the north pole of the Riemann sphere. The
intersection between this line and the Riemann sphere
defines the transformed point.

A plane in space is in general described by four
parameters{c,n1, n2, n3}, wherenT = (n1, n2, n3) is
a unit length normal vector of the plane andc is a
signed distance from the plane to the origin. All points
(x, y, z) in space satisfying

c+ n1x + n2y + n3z= 0 (4)

are lying in this plane. In order to map a circle in the
plane onto the Riemann sphere, one first picks three
points on the circle. These points are mapped onto the
sphere by Eqs. (1), (2) and (3), and the transformed
points are used to form two non-parallel vectors in
space. The normalized cross product of these two
vectors is the normal vector of the plane, andc is then
easily found by insertion into Eq. (4).

Fitting a plane in space to the measurements on the
Riemann sphere will be defined as the minimum of

S =
N∑
i=1

(c+ n1xi + n2yi + n3zi)
2=

N∑
i=1

d2
i (5)

with respect toc, n1, n2 and n3, subject to the
constraintn2

1+ n2
2+ n2

3 = 1. In other words, we want
to minimize the sum of squared distancesd2

i from the
points to the plane. We start by finding the minimum
of S with respect toc. This is straightforwardly done
by solving∂S/∂c= 0, and this gives

c=−nTr, (6)

with rT = (x, y, z). Herer can be interpreted as the
mean vector of the data, withx = ∑i xi/N , y =∑
i yi/N andz =∑i zi/N . Omitting an unimportant

constant factorN , the cost functionS can now be
written

S = nTAn, (7)

where

A= 1

N
·
N∑
i=1

(r i − r)(r i − r)T, (8)

andrT
i = (xi, yi, zi ). The matrixA can be recognized

as the sample covariance matrix of the measurements.
We now want to find the minimum ofS with respect to
n. In order to solve this task, we begin by expressingn

in the basis consisting of the eigenvectors{uj } of A:

n=∑3
j=1 ajuj . SinceA is a symmetric matrix, it can

be expressed asA=UDUT [5], where the columns of
U consist of the eigenvectors{uj } andD is a matrix
with the eigenvalues{λj } of A on the main diagonal
and zeros otherwise. This gives

S =
3∑
j=1

a2
j · λj , (9)

with
∑3
j=1 a

2
j = 1. From this expression it is easy to

see that the minimum ofS is obtained by choosing
n to be the eigenvector corresponding to the smallest
eigenvalue ofA. Thus, the minimization problem basi-
cally reduces to finding the eigenvalues and eigenvec-
tors of a 3× 3 matrix, something which in principle
can be done analytically. The solution can therefore
be found in a simple and direct manner. After having
determined the normal vectorn, c is directly given by
insertion into Eq. (6).

The approach of finding the eigenvectors and eigen-
values of the covariance matrix of the data is also
called Principal Component Analysis (PCA) [6], a
technique often used in the fields of Pattern Recog-
nition and Image Analysis. In this language, the above
solution is the principal vector corresponding to the
least principal value. It can be shown [6] that there is
no direction in space in which the projected measure-
ments have a smaller variance than the direction of this
principal vector. It should come as no surprise that the
criterion of smallest variance is exactly the same as the
minimization of the cost function given in Eq. (5).

The mapping from the parameters of the plane to the
parameters of the circle is easily derived by expressing
Eqs. (1), (2) and (3) in Cartesian coordinates(u, v) and
inserting these into Eq. (4). This gives an expression
which is quadratic inu and v. Knowing that the
general formula of a circle is(u− u0)

2+ (v − v0)
2=

ρ2, the centre coordinates and radius of curvature can
be identified as

u0=− n1

2(c+ n3)
, (10)

v0=− n2

2(c+ n3)
, (11)

ρ2= n
2
1+ n2

2− 4c(c+ n3)

4(c+ n3)2
. (12)

Note that there is a singularity forc=−n3. This only
happens in the case where the plane is going through
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the north pole of the Riemann sphere. Planes going
through the north pole of the sphere corresponds to
straight lines in the plane, and for straight lines the
above parameterization has no meaning. However, in
the case wherec is very close or equal to−n3 it
is possible to map the parameters of the plane to
another set of circle parameters, say, the curvature,
the angle between the tangent to the track and thex-
axis, and the distance from the origin at the point of
closest approach to the origin. This mapping is well-
defined for both circles and straight lines. We have
tested out both methods on the track sample used in
the experiments described later on, and numerically
the results have in this case turned out to be totally
equivalent.

Even though we know the centre coordinates and
the radius of curvature, the information about the ori-
entation of the circle is lacking. This might be relevant
for instance in a collider experiment when tracking
reasonably high-energetic particles through a tracking
detector. For such particles, the measurements are po-
sitioned along only a minor fraction of the circle, and
it is therefore meaningful to speak about a track direc-
tion. The orientation of the fitted circle can be defined
to depend on the direction of the normal vector. Since
the centre coordinates and the radius of curvature are
invariant with respect to a transformationn→−n (c
is automatically changing sign whenn→ −n), we
have two possible normal vectors for each circle, cor-
responding to the two different orientations of the cir-
cle. One possible convention is to say that a positive
sign ofn3 corresponds to a counterclockwise orienta-
tion of the circle.

In other situations, as for instance in determining
the parameters of a circular pattern in a RICH detector,
the measurements are in principle spread around the
whole circle. The method of fitting presented herein
can be used also in such a case, but for this application
it does not make sense to define an orientation of the
circle.

The algorithm for track fitting on the Riemann
sphere will then be as follows.
(1) Map the points of the track candidate onto the

Riemann sphere by Eqs. (1), (2) and (3).
(2) Obtain the parameters{c,n1, n2, n3} as the solu-

tion of the constrained minimization problem de-
scribed above.

(3) Map the parameters of the plane back to the circle
parameters(u0, v0, ρ) by aid of Eqs. (10), (11)
and (12).

(4) If the application requires, determine the orienta-
tion of the circle from the direction of the normal
vector.

3. Modifications of the original algorithm

We will in Section 5 state results from simulation
experiments of high-energetic tracks from a drift tube
detector: the ATLAS Inner Detector TRT. In the barrel
part of the ATLAS TRT, the detector elements are
arranged in cylindrical layers, and in our simulations
the magnitude of the measurement error inRφ is
constant throughout the detector. This is of course
only approximately correct when comparing with a
real drift tube. The drift distance given by such a
detector element will be the shortest distance from
the track to the straw centre. For high-energetic tracks
this distance is almost the same as the distance inRφ,
but there is a small difference for particles with lower
energy.

The distance inRφ between the two points(Ri,φi)
and (Ri,φi + 1φi) is of courseRi1φi . The corre-
sponding distance between the transformed points on
the Riemann sphere is

ri1φi = Ri1φi

1+R2
i

, (13)

whereri =
√
x2
i + y2

i . This can be seen by using the
expressions from Eqs. (1) and (2) forxi andyi and
by realizing that the angleφi in the plane maps onto
the same angle in the parallel plane containing the two
transformed points, i.e. the plane defined by the equa-
tion z = R2

i /(1+ R2
i ). In other terms, a distance in

Rφ in the plane maps onto a distance inrφ on the
Riemann sphere with a radius dependent scaling fac-
tor (1+R2

i )
−1. Even though the Gauss–Markov con-

ditions [7] are fulfilled for the measurements in the
plane, this is not the case for the transformed measure-
ments, and the distances on the Riemann sphere have
to be scaled with the above mentioned scaling factor
in order to compensate for this. Moreover, since high-
energy tracks map onto planes being relatively verti-
cal, the distances from the points to the plane can be
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assumed to not deviate much from the distances inrφ.
Thus, the following modified cost function

Smod=
N∑
i=1

(1+R2
i )

2 · d2
i =

N∑
i=1

pi · d2
i , (14)

can be hoped to reasonably well fulfill the Gauss–
Markov conditions. The simulation results from Sec-
tion 5 will show that this is indeed the case.

The minimization of the above cost function with
respect to the plane parametersc, n1, n2 and n3 is
a weighted least-squares problem. Even though the
direct PCA analogy does not exist for the weighted
case, it can be treated along exactly the same lines as
the non-weighted least-squares problem of Section 2.
Firstly, we try to solve∂Smod/∂c= 0. This gives

c=−nTrcg, (15)

with the “centre of gravity”-vectorrT
cg= (xcg, ycg, zcg),

where

xcg=
∑N
i=1pixi∑N
j=1pj

, (16)

ycg=
∑N
i=1piyi∑N
j=1pj

, (17)

zcg=
∑N
i=1pizi∑N
j=1pj

. (18)

The cost function can then be written (again neglecting
a constant factorN )

Smod= nTAwn, (19)

where the weighted covariance matrixAw is given as

Aw = 1

N
·
N∑
i=1

pi(r i − rcg)(r i − rcg)
T. (20)

As before, the vectorn minimizing the above cost
function is the eigenvector corresponding to the small-
est eigenvalue ofAw. With the normal vector given,c
is determined from Eq. (15).

It is possible to support the reasoning leading to
the structure of the above modified cost function with
some analytical results. Given a circle in the plane and
a point (Ri,φi), we would like to derive a relation
between the distance from the point to the circle and
the distancedi from the mapped point(xi, yi, zi) to
the corresponding plane in space (parameterized by

the set{c,n1, n2, n3}). By applying the transformation
formulas given in Eqs. (1), (2) and (3) and the
expression ofdi given in Eq. (5), we end up with the
following result:

di,Rφ · cos

(
arcsin

(
1

2
κRi

))
= di · (1+R

2
i )√

1− n2
3

. (21)

Here di,Rφ is the distance inRφ from the point to
the circle, whileκ denotes the curvature of the circle.
The above expression is correct to first order series
expansions of sin(di,Rφ) and cos(di,Rφ), which is a
very good approximation for reasonably smalldi,Rφ . It
is also assumed that the impact parameter of the track
is not too large. The expression on the left-hand side of
Eq. (21) can by trigonometric considerations be seen
to be equal to the orthogonal or the shortest distance
di,⊥ from the point(Ri,φi) to the circle. See Fig. 1
for a schematic drawing of the circle and the different
types of distances. We can then write

di,⊥ = di · (1+R
2
i )√

1− n2
3

, (22)

so minimizingSmod is in fact equivalent to minimiz-
ing the sum of squared orthogonal distances from the
points to the circle. (The square root in the denomina-
tor of Eq. (22) would be the same for all terms in a
cost function consisting of a sum of squared orthog-
onal distances, and the square root can therefore be
omitted.) When dealing with real, experimental data
minimizing these orthogonal distances is exactly what
we would like to do.

We are now in the position of being able to define a
χ2 of the track. For a real drift tube, the quantity

χ2⊥ =
N∑
i=1

(
di,⊥
σ

)2

(23)

should be approximatelyχ2 distributed withN − 3
degrees of freedom. The quantityσ denotes the
measurement error of the drift tube. In the simulation
experiments of this paper, however, we encounter
the simplified situation of a measurement error being
constant in magnitude inRφ. Thus, for our specific
case the following, modifiedχ2,

χ2
Rφ =

N∑
i=1

(
di,Rφ

σ

)2

, (24)
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Fig. 1. This is a simplified drawing of a track going through a detector consisting of cylindrical detector layers. A measurementi and the
distancesdi,Rφ anddi,⊥ from the measurement to the track are indicated.

should follow theχ2 distribution even more closely.
The validity of these statements will be confirmed by
the results of Section 5.

4. The Elastic Planes algorithm

In a study [4] of track fitting in the presence of am-
biguous measurements and noise, the Elastic Arms al-
gorithm (EA) has been shown to be a very powerful
tool. However, in order to achieve the optimal perfor-
mance of the algorithm, it is necessary to apply ad-
vanced methods of unconstrained optimization for the
minimization of the effective energy. This makes the
EA quite time consuming. In the single-track case, the
effective energy is given as

Eeff =− 1

β

∑
k

log

(
nk · e−βλ +

nk∑
j=1

e−βMjk

)
, (25)

whereβ is the inverse temperature, the sum overk is
a sum over detector layers,nk is the number of points
in detector layerk, λ is a squared cutoff distance and
Mjk is the squared distance from pointj in layerk to
the track. In the same paper it was pointed out that by
using the EM algorithm [8], the EA can be formulated
as an iteratively reweighted least-squares procedure.
One step of this procedure consists of minimizing the
function

Q(p|p′)=
∑
k

nk∑
j=1

Mjkp
′
jk (26)

with respect top. Herep andp′ denote two different
values of the parameter vector defining the track. The
prime on the weights{p′jk} means that they are a
function of p′ and therefore considered as constants
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during the minimization. The weights or assignment
probabilities in the EA are given as

pjk = e−βMjk

nk e−βλ +∑nk
l=1 e−βMlk

. (27)

The solution of the minimization part of the EM algo-
rithm was obtained by a Kalman filter, and the result-
ing algorithm was called the Deterministic Annealing
Filter (DAF).

In this work, we propose an alternative formulation
of the EA based on the idea of doing the minimization
part of the EM algorithm as a weighted least-squares
fit on the Riemann sphere. The method of obtaining
such a fit is described in Section 3. Since the distances
now involved are thedi ’s from Eq. (14), the weights
will for this algorithm be a product of the assignment
probabilities given above and the geometrical factor
pi from Eq. (14). The “arms” or circular arc templates
are here mapped onto planes in space, and we there-
fore call this new algorithm theElastic Planes(EP)
algorithm. The major advantages of the EP over the
original formulation of the EA are the following:
• Being virtually as precise as the EA, the EP is

significantly faster.
• In contrary to the EA, there is no need for applying

advanced, time-consuming optimization methods.
• As a consequence of the previous point, the number

of parameters that are to be tuned during the
optimization is significantly less for the EP than for
the EA.

It has to be pointed out that the DAF, also being
an EM algorithm, has many of the same advantages
over the EA. In addition, since the backbone of the
DAF is a Kalman filter, process noise like multiple
Coulomb scattering can easily be incorporated in the
formalism. The covariance matrix of the estimated
track parameters is also supplied by the DAF, while
it is not obvious how to calculate this for the EP
algorithm. With respect to these aspects, the DAF
is a more powerful algorithm than both the EA and
the EP. However, the DAF is comparable to the EA
when it concerns CPU time consumption. In cases
where multiple scattering can be neglected, the EP
is therefore a significantly faster alternative than the
other two methods.

5. Simulation experiments of tracks from the
ATLAS TRT

5.1. The ATLAS Inner Detector TRT

ATLAS is one of the two general-purpose experi-
ments in the LHC project at CERN. According to the
current schedule, the LHC will start to take data dur-
ing the year 2005. In the ATLAS experiment, the Inner
Detector is the main tracking device (see Fig. 2). The
outermost part of the Inner Detector is the Transition
Radiation Tracker (TRT), and the simulation experi-
ments of this paper consist of tracks from the barrel
part of the TRT. The TRT is a drift tube (“straw”) de-
tector. The straws in the barrel are parallel to the beam
pipe and arranged in cylindrical layers. The radii of the
layers range from about 56 to 106 cm, and there are 75
layers in total. There is a separation of about 6.8 mm
between the layers, and the individual straws in each
layer are also separated with about 6.8 mm. The diam-
eter of each straw is 4 mm. There are in total about
50,000 straws in the barrel part of the TRT. More
details concerning this detector can be found in the
ATLAS Inner Detector Technical Design Report [9].

The simulated measurements are given in polar
coordinates. For each measurement, we therefore have
information about the layer number, the radius of this
layer, the polar angle of the centre of the straw, the
absolute value of the drift distance and the number of
the particle creating the hit. During the reconstruction,
it is not known at which side of the sense wire the
particle has passed. The observations are therefore in
principle ambiguous.

We have simulated a sample of 9800 tracks coming
from the origin and going entirely through the barrel.
The information about the location of the vertex is
of course not used during the reconstruction; we
therefore invoke a full three parameter fit to the
data points. All tracks have a transverse momentum
pT larger than 1 GeV/c. We have neglected all
process noise in the form of material effects, but a
measurement error of 250µm is simulated. The track
sample used in this work is the same as the one used
in a couple of recent publications [4,10].

For some of the methods tested below, we need
an initial estimate of the track parameters. This is
provided by a least-squares fit in theRφ-projection of
all points in a track candidate to a straight line [4].
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Fig. 2. The ATLAS Inner Detector.

Since tracks with apT above 1 GeV/c coming from a
place reasonably close to the origin are almost straight
lines, this initial estimate should be sufficiently close
to the true track.

5.2. Results without mirror hits

In the first simulation experiment, we will focus on
the basic statistical properties of the different methods.
For this reason, we have turned the mirror hits off
during the simulation. This corresponds to the case of
a perfect pattern recognition, i.e. all points in a track
candidate belong to the track to be fitted. An example
of such a track is shown in Fig. 3.

We evaluate the precision of the methods by the
generalized varianceV of the residuals of the es-
timated track parameterŝx with respect to the true
parametersxtrue. This is defined as the determinant of
the sample covariance matrixC of x̂,

C = 1

Nt

Nt∑
i=1

(x̂i − xi,true)(x̂i − xi,true)
T, (28)

whereNt denotes the number of tracks in the sample.
The results of the experiment are summarized in

Table 1. We here state the generalized varianceVrel
and the CPU time consumptiontrel relative to the
method with the best performance. We have focused

Table 1
The relative generalized variance and the relative time consumption
for five different algorithms

Method Vrel trel

NLS without initialization 1.000 36.3

NLS with initialization 1.000 41.4

GLS without initialization 1.001 15.9

GLS with initialization 1.001 21.1

KF without initialization 1.001 28.2

KF with initialization 1.001 33.3

RF with modifications 1.003 1.00

RF without modifications 1.055 1.00

CM 1.582 1.03

on five methods: an iterative, non-linear least-squares
procedure (NLS) based on the Levenberg–Marquardt
algorithm [7], a global least-squares fit (GLS) [11],
a Kalman filter (KF) [12], a least-squares fit to a
parabola by the conformal mapping method (CM) [13]
and the least-squares fit on the Riemann sphere (RF).
For the first three algorithms, the CPU time consump-
tion is given both with and without the track parameter
initialization procedure. For the Riemann fit, the gen-
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Fig. 3. A track without mirror hits, shown in theRφ-projection. The radii are given in centimetres.

eralized variance is given for the two cases with and
without the modifications mentioned in Section 3.

The CM method is similar to the RF in the way
that it maps a non-linear problem onto a linear one,
and the fit is obtained non-iteratively. Hence, the
computational load of the CM should be comparable
to the RF. If one requires that the circles go through
the origin, the circles map onto straight lines in
the transformed space. In order to be able to make
a reasonable comparison, we have implemented the
three-parameter version of this method which allows
for a non-zero impact parameter. The CM works only
in the case of a small impact parameter. The RF,
however, mapsanycircle onto a plane in space and is
therefore in general not restricted to this requirement.

As expected, the NLS method is the most accurate.
However, the GLS, the Kalman filter and the RF
with modifications are negligibly less accurate. The
GLS estimates are obtained in an approximation of
linear track parameter extrapolation. In the case of no
process noise, the GLS procedure is equivalent to the

KF, and these two methods therefore give identical
results. The original RF is also performing well, but
the difference to the first three methods is significant.
With the modifications included, it is virtually as good
as the NLS, the GLS and the KF. The CM performs
much worse than all the other methods.

Concerning CPU time consumption, the RF and
the CM are by far the fastest algorithms. This is true
also if we neglect the track parameter initialization.
It has to be noted that this initialization is a vital
part of the three other methods. In order to make a
realistic comparison, the initialization should therefore
be included. Due to some overhead in the code, this
procedure is slower than what is expected. Since the
initialization basically is a linear least-squares fit, it
should be possible to make it as fast as the RF or the
CM. Being an iterative method, the NLS is the slowest
of all. The GLS is number two after the RF. More than
80% of the execution time is used to extrapolate track
parameters and build up matrices of derivatives, so the
fit itself is less than three times slower than the RF
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(a) (b)

Fig. 4. We here plotχ2⊥ andχ2
Rφ

againstχ2
GLS. In (a) the straight line (with slope 1) is shown as a guide to the eye. (a)χ2⊥ againstχ2

GLS.

(b) χ2
Rφ

againstχ2
GLS.

fit. Again, the building-up of derivative matrices is an
indispensable part of the GLS and has to be recognized
as such. The KF is slower than the GLS. If process
noise cannot be neglected, however, the KF is able
to include this in a natural and efficient way and is
therefore the natural choice.

In Section 3 we have looked at two different
quantities which could define aχ2 of a fitted track
for the RF. Fig. 4 shows scatter plots of these two
candidates against the correspondingχ2 of the GLS.
The correlations are seen to be large in both cases, but
it is obvious from (a) thatχ2

GLS is consistently larger
than or equal toχ2⊥. This is very reasonable, since
the distances inRφ always are larger than or equal
to the orthogonal distances. From (b) it is clear that
the correspondence betweenχ2

GLS andχ2
Rφ is almost

exact. This is confirmed by the results shown in Fig. 5.
In (a) we show a histogram of the tail probability
of the RF usingχ2⊥ to calculate theχ2, while in
(b) the same quantity is shown withχ2

Rφ as a basis
for the calculation. (The tail probability is defined as
1 − F(χ2), whereF is the cumulative distribution
function of theχ2-distribution. If aχ2-statistic really
is χ2-distributed, a histogram of the corresponding
tail probability should be reasonably flat.) In (c) a
histogram of the tail probability of the GLS is plotted.

The χ2⊥ obviously has a tendency to yield too high
tail probabilities. This is also reflected in the mean
value, which is 0.518. The histograms of (b) and (c)
are virtually indistinguishable, and the mean value is
in both cases 0.502.

5.3. Results with mirror hits

In the second simulation experiment, the mirror hits
are turned on. Fig. 6 shows the same track as the one
shown in Fig. 3, but now the mirror hits are included
as well.

We have studied the performance of five different
versions of the Elastic Arms algorithm. Three of them
are based on the iteratively reweighted least-squares
formulation, while the rest follow the “standard”
approach by minimizing the effective energy. For this
minimization we have used ordinary gradient descent
during the annealing phase, but at the final temperature
we have applied the DFP algorithm [14].

The first algorithm is the DAF. The second one,
the global least-squares method (GLS) with annealing,
is an alternative which is faster than the DAF. It
basically works by doing the minimization part of
the EM algorithm with a GLS method instead of
with a Kalman filter. In the case of negligible process
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(a) (b)

(c)

Fig. 5. Here histograms of tail probabilities of the RF ((a) and (b)) and the GLS are shown (c).

noise, this method is equivalent to the DAF. The third
method, the Elastic Planes (EP) algorithm, is doing
the minimization part of the EM algorithm on the
Riemann sphere. Otherwise, it is similar to the first
two methods. The fourth algorithm is the standard
EA algorithm as presented by Ohlsson, Peterson and
Yuille. The fifth algorithm is minimizing an effective
energy with the same structure and using the same
tools as the standard EA, but the difference is that the
distances are given on the Riemann sphere instead of
in the plane. It is therefore related to the EP algorithm

(EM formulation) in the same way as the standard EA
algorithm is related to the GLS with annealing.

The results are again given relative to the method
with the best performance. The initialization proce-
dure is now included in the calculation of the time
consumption for all methods. This is due to the fact
that now all the algorithms have to be provided with
an initial guess of the track parameters.

The results from this experiment are summarized
in Table 2. As expected, it is seen that the DAF and
the GLS with annealing produce equivalent results
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Fig. 6. This is the same track as in Fig. 3, but here the mirror hits are included. The track hits are shown as open rings, the mirror hits as
asterisks.

Table 2
The relative generalized variance and the relative time consumption
for five different algorithms

Method Vrel trel

DAF 1.00 13.6

GLS with annealing 1.00 3.3

EP (EM formulation) with modifications 1.01 1.0

EP (EM formulation) without modifications 1.19 1.0

EA (standard formulation) 1.00 28.1

EP (standard formulation) with modifications 1.01 17.4

EP (standard formulation) without modifications 1.23 17.4

when it concerns the accuracy of the estimates. The
EP algorithm (EM formulation) with the modifications
presented in Section 3 is worse by a factor of 1.01 in
generalized variance. Please note that this on average
corresponds to only about 0.15% larger standard

deviations of the track parameter estimates, something
which in an experimental setting can be assumed to
be negligible. As expected, the EP algorithm (standard
formulation) behaves similarly to the EP algorithm
(EM formulation) when it concerns the accuracy of
the estimated parameters. The standard EA algorithm
is, also as expected, as accurate as the DAF/GLS with
annealing.

As for the CPU time consumption, the EP algorithm
(EM formulation) is the winner. However, the gain by
applying the Riemann fit is less here than in the case
of no mirror hits. This is mainly due to three reasons.
Firstly, the initialization procedure is needed also for
the EP algorithm. Secondly, the calculation of the
weights takes approximately the same amount of time
for the EP as for the other algorithms. Thirdly, since
one needs to build up the derivative matrices only once
for each track, the relative speed of the GLS increases
as the number of iterations increases. All these effects
contribute to make the relative difference between the
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EP and the GLS with annealing less than the relative
difference between the RF and the GLS. Anyway,
the EP is still significantly faster than the GLS with
annealing, and a faster initialization procedure would
have made the relative difference between the EP and
the GLS with annealing even larger than the number
presented in Table 2. The DAF is more than 13 times
slower than the EP (EM formulation). As expected,
the two algorithms minimizing the effective energy
are the slowest. Note, however, that the EP (standard
formulation) is significantly faster than the EA and
almost as fast as the DAF. This can be explained by
noting that the expressions of the distances are much
simpler on the Riemann sphere (given in Eq. (5)) than
in the plane, so the effective energy and its derivatives
are therefore computationally less expensive. The
standard EA is almost 30 times slower than the fastest
version of the EP.

6. Conclusions and outlook

We have in this paper presented a novel algorithm
for track fitting in high-energy particle physics detec-
tors. It is based on the idea of transforming the task
of fitting circular arcs in the plane to fitting planes in
space. This is done by mapping the measurement coor-
dinates onto the Riemann sphere. The resulting prob-
lem can be solved in a fast and non-iterative manner.

In order to further optimize the performance of the
RF algorithm, we have introduced some modifications
of the ideas from the original paper [1]. This results
in a method which is virtually as precise as an opti-
mal, non-linear procedure, and it is significantly faster
than other, popular estimators as the Kalman filter and
the global least-squares method. Moreover, it is com-
parable in computational complexity and much more
precise than the conformal mapping method. However,
it is not straightforward to obtain an expression of the
covariance matrix of the estimated parameters. Future
efforts will be put into an attempt of solving this prob-
lem.

By employing the EM formulation of the Elastic
Arms algorithm, we have presented a novel version of
this called the Elastic Planes algorithm. It turns out to
be negligibly less precise than an optimal version of
the Elastic Arms, and it is much faster. With respect
to computational speed, the EP algorithm compares

favourably also with the DAF and a global least-
squares method with annealing. It has to be noted,
however, that the DAF incorporates process noise in
a natural way. In cases where for instance multiple
Coulomb scattering cannot be neglected, the DAF
is the natural algorithm to choose. It can also be
noted that the CPU time consumption for the different
algorithms refers to an implementation inMATLAB.
For compiler languages asC or C++, the timing
behaviour might be slightly different.

In this work, we have applied the RF and the EP al-
gorithm to relatively high-energetic tracks, i.e. tracks
which are reasonably straight. For these tracks we
have also seen that the Kalman filter and the GLS
method work very well. If we consider the task of fit-
ting a circle to measurements from a Ring Imaging
Cherenkov Detector (RICH), the Kalman filter is not a
good solution. The Riemann fit is well defined also in
this case, and it is therefore an alternative method for
solving such a problem. Sometimes one also needs ro-
bust circle fitting algorithms when analyzing data from
a RICH detector [15]. The EP algorithm should be per-
fectly suited for this, and it would be very interesting
to investigate its behaviour on experimental data.

We have in this paper focused on the task of fit-
ting circular arcs. Data coming from tracking detec-
tors in solenoidal magnetic fields are in general three-
dimensional, and one will in such cases rather fit a
helix to the measurements. It should be possible to
extend the Riemann fit to this more general situation
without losing the advantages of a fast and direct so-
lution method. This will be the topic of a future study.
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