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Abstract

The problem of fitting track data is transformed into a problem in antenna theory. This latter well-studied problem is
characterized as an antenna array that is receiving a narrow band signal from multiple distant sources. The goal here is to
count the number of sources and determine the angle of each source relative to the array. Similarly, the original problem of
track fitting is to count the number and to determine the location and angle of each track, but in the presence of noise and finite
detection efficiency. However, an additional complication in fitting tracks is that in a magnetic field, the radius of curvature of
the track must also be determined. This is shown to map into an extended antenna problem of analyzing ‘chirped’ or frequency
modulated sources. A somewhat detailed development and discussion of track parameter estimation utilizing Bayesian methods
is then given. The main goal of this paper is to point out the relationship between these disparate problems. No numerical
comparisons with established methods are given. 2000 Elsevier Science B.V. All rights reserved.

1. Introduction and motivation

In the real world, the measurement of global char-
acteristics of an image over a large volume or area
are beset by a number of difficulties. In the paper by
Aghajan and Kailath [1] an elegant and useful method
for fitting multiple lines in a two-dimensional image
was given that exploits the analogy to the problem of
an antenna array that is receiving a narrow band sig-
nal from multiple distant sources. This work was an
extension of the work by Roy and Kailath [2] on the
ESPRIT method (Estimation of Signal Parameters via
Rotational Invariance Technique). Other work in this
field has been done by Lou et al. [3] and Kumaresan
and Tufts [4].
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A simple introduction to this area of research is
given in Appendices A and B. These appendices do
not discuss the more sophisticated methods developed
in the above papers; they are meant to indicate both
the logical connection to the method proposed in the
present paper as well as contrast the methods used.
Since the author did not have access to computer
programs utilizing these methods, no tests of relative
numerical efficiency are given.

In many high energy physics experiments, it is
necessary to measure the characteristics of tracks
produced by particles as they transit a detector. These
‘images’ are corrupted by noise and by the finite
detection efficiency of the active elements of the
detector. Track fitting commonly proceeds by two
stages: first estimating the number of tracks (lines)
and their parameters in an event, and then passing
this information to a more elaborate fitting procedure
to extract accurate values for the parameters of each
track.

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
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Fig. 1. A sample event with noise and finite detection efficiency.

An example problem is illustrated in Fig. 1. Each
square ‘hit’ denotes a response from one of the
elements in the detector volume. It is quite easy to see
(or at least imagine) that there are two tracks in this
event. It is also evident that the detector has both noise
and a finite detection probability. The mathematical
problem is to develop an algorithm that will count the
number of tracks and fit the shape of the tracks while
ignoring the noise to the maximum extent possible.

A standard approach to the first stage estimate of
the number of tracks and their parameters is the Hough
transform, described and extended in the paper by Pao
et al. [5]. In this paper, an improvement is given that
extracts the same information using a more efficient
algorithm than the standard Hough transform.

The second stage can be handled by a variety of
methods too numerous and complicated to mention.
The development of one method, called Deformable
Templates, or Elastic Arms, can be found in Ohlsson
et al. [6]. Extensions of this method have been given
by Ohlsson [7] and Blankenbecler [8].

In this paper, the problem of fitting track data is
transformed into an analogous problem in antenna sig-
nal analysis in which the goal is to count the number
of radiating sources and determine the angle of each
source relative to an antenna array by suitable manipu-
lation of the received signal. Similarly, the basic prob-

Fig. 2. A schematic of the antenna problem showing two incoming
signals and its geometric relationship to the track fitting problem.
The detailed mathematical relationship is given in the text.

lem of track fitting is to count the number and to deter-
mine the location and angle of each track in the pres-
ence of noise and finite efficiency. These two different
problems are illustrated in Fig. 2. The upper diagram
schematically defines the antenna problem, while the
lower diagram illustrates the simulated antenna used
in our treatment of track fitting.

For curved tracks, an extension of the above con-
cepts must be developed. It will be shown that in this
case, the analogous signals incident on the antennas
are frequency modulated. The detection of a restricted
class of ‘chirped’ signals is discussed in a form useful
for the present problem by Jaynes [10], Bretthorst [11]
and Erickson et al. [12].

Standard images are two-dimensional and the dis-
cussion here will explicitly treat only this case. How-
ever detectors measure three-dimensional tracks. Thus
the present analysis deals separately with the two
transverse projections of such data. The treatment of
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the full three-dimensional case together with the addi-
tional information and constraints that one projection
imposes on the other will be given later.

2. Single curving track with noise

Consider a two-dimensional image plane of area
Y ∗ Z consisting of pixels that can take values of ‘1’
and ‘0’. These values are given by the matrixIj,m,
where 0< j < J sweeps out they-direction, and
0< m < M, the z-direction. As advertised,Ij,m = 1
or 0. First we will discuss an image consisting of a
smooth line, or track, together with noise pixels, or
outliers, for whichIj,m = 1. Thus

Ij,m = (1− ej,m) for j = t (m), (1)

Ij,m = nj,m otherwise, (2)

where the equation of the track isj = t (m). In the
simple linear case,j = t0 + t1m, with t1 measuring
the y–z slope. Our treatment will hold for a general
track shape. The fluctuating variableej,m measures
the detectioninefficiency. Thusej,m = 0 if the pixel
‘fired’, and ej,m = 1 if it did not. Similarly, the noise
is given by the fluctuating variablenj,m. Since there
is no a priori way of identifying noise hits with track
hits, any procedure must treat all data points the same.
It is the analysis itself that must fit the real hits while
identifying and then ignoring the noise hits to the
maximum extent possible.

Now formally define a pair of ‘signals’ at themth
row which is given by the sum over all the nonzero
pixels in they-direction

cm =
∑
j

Ij,m cos[δφj ] (3)

= (1− et (m),m)cos
[
δφt (m)

]
+

∑
j 6=t (m)

nj,m cos[δφj ], (4)

and

sm =
∑
j

Ij,m sin[δφj ] (5)

= (1− et (m),m)sin
[
δφt (m)

]
+

∑
j 6=t (m)

nj,m sin[δφj ], (6)

whereδφ is a fixed parameter to be chosen later. The
difference between the above signals and the signals
in a perfect detector with no noise is

δcm ≡ cm − cos
[
δφt (m)

]
(7)

=−et (m),m cos
[
δφt (m)

]
+

∑
j 6=t (m)

nj,m cos[δφj ], (8)

and

δsm ≡ sm − sin
[
δφt (m)

]
(9)

=−et (m),m sin
[
δφt (m)

]
+

∑
j 6=t (m)

nj,m sin[δφj ], (10)

and define

(δom)
2≡ (δcm)2+ (δsm)2. (11)

First preform the statistical average of the inefficiency
and noise variables which range between zero and
one. Then average over all possible parameters of the
track which drives the cross terms to zero. The final
ensemble average is

σ 2= 〈(δom)2〉= 〈e2
m〉 + (J − 1)〈n2

m〉, (12)

whereσ is the measure of the expected fluctuation
of the quantityδom. The first term is the expected
fluctuation coming from the inefficiency of detecting
the track, while the second term measures the expected
noise from the remaining(J − 1) pixels.

Thus given the true equation of the trackt (m), the
probability that the data setO = {om} will occur is
just the probability that the fluctuations will make up
the difference:

p(O|t, σ )=
M−1∏
m=0

1√
2π σ 2

exp

[
− 1

2σ 2
(δom)

2
]
, (13)

where the argumentt stands for all the parameters
describing the track.

Conversely, given the noise levelσ and the dataO ,
the joint likelihood of the parameters of the equation
of the track,t (m), is

L(t, σ )∝ exp

[
− 1

2σ 2

M−1∑
m=0

(δom)
2

]
. (14)
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2.1. Approximations

In order to extract the general behavior of this result,
certain approximations will be made at this juncture.
Expand the quadratic expressionδo2

m. The first term,
o2
m, depends only on the data, not on the parameters to

be fitted. Except for particular values of the parameters
of the track, the last term can be approximated by [13]

M−1∑
0

cos2
[
δφt (m)

]
∼
M−1∑

0

sin2[δφt (m)]∼ 1

2
M. (15)

The important dependence of the likelihood function
on the track parameters then arises only from the cross
terms and

L(t, σ )∝ exp

[
1

σ 2

M−1∑
0

(
cm cos

[
δφt (m)

]
+ sm sin

[
δφt (m)

])]
. (16)

First we concentrate our interest on the parametert (0),
the intercept of the track. Defineθ = δφt (0) so that

δφt (m)= δφ(t (m)− t (0))+ θ ≡ δφ1t(m)+ θ.
The likelihood functionL becomes

L(t, σ )∝ exp

[
1

σ 2Σ

]
, (17)

where

Σ =
M−1∑

0

(
cm cos[δφ1t(m)+ θ ]

+ sm sin[δφ1t(m)+ θ ]), (18)

Σ =Σc cosθ −Σssinθ, (19)

with

Σc=
M−1∑

0

(
cm cos[δφ1t(m)] + sm sin[δφ1t(m)]),

(20)

Σs=
M−1∑

0

(
cm sin[δφ1t(m)] + sm cos[δφ1t(m)]).

(21)

The value oft (0) (determined to within a branch ambi-
guity of the arctangent) that maximizes the likelihood
functionL(t, σ ), and the corresponding maximum of
Σ , are

tanθ =−Σs

Σc
and Σmax =

√
Σ2

c +Σ2
s . (22)

In solving for θ , the branch of the tangent function
must be chosen so that the second derivative ofΣ

is positive. Also note that this latter quantity can be
rewritten as

Σ2
max≡MC(t) (23)

= 1

M

∑
m,n

(cmcn + smsn)
× cos

[
δφ(1t(m)−1t(n))]

+ (cmsn − smcn)
× sin

[
δφ(1t(m)−1t(n))]. (24)

On the other hand, one could drop immediate inter-
est in the parametert (0). This ‘nuisance’ parameter
should then be integrated out of the likelihood func-
tion. To that end introduce a reduced likelihood func-
tionL0 and carry out the integral overθ ,

L0(t, σ )∝
2π∫
0

dθ

2π
exp

[
1

σ 2
Σ

]
, (25)

∝ I0
[√

MC(t)

σ 2

]
, (26)

whereI0(x) is a standard Bessel function andC(t)
is the same function introduced in Eq. (24). The
function I0 is a monotonically increasing function of
its argument. The likelihood functionsL andL0 are
different in form, because the questions asked were
different, but in both cases the optimum values of the
remaining track parameters,ti (i 6= 0), are determined
by the maximum of the same function, namelyC(t).

The functionC(t) is a generalization of the Schus-
ter [9] periodogramused in spectral analysis of time
series. Jaynes [10] has applied this function to the
analysis of frequency modulated signals and termed
it a chirpogram. In the present case, the nametrack-
ogram seems to be descriptive. Note that all of our
general discussion holds for any track function. For a
curving (quadratic) track,t (m)= t0+ t1m+ t2m2, and

t (m)− t (n)=1t(m)−1t(n)
= [δφ t1(m− n)+ δφ t2(m2− n2)

]
. (27)
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Hence the likelihood function is a maximum for
the values of the track parameterst1 and t2 which
maximizeC(t).

Note also that the calculation ofC(t) from the
double sum in Eq. (24) requires∼M2 steps, whereas
its evaluation fromΣc andΣs as in Eq. (21) requires
only ∼2M steps, a considerable savings for largeM.
Finally, the maximum value ofC(t) can be estimated
to be roughlyM.

3. Multiple curving tracks with noise

Now consider the case ofD tracks that are described
by the functions

td (m), for 06 d <D. (28)

The ‘signal’ at the mth row is now given by the sum
over all nonzero pixels on that row:

cdm =
∑
d

(1− etd (m),m)cos
[
δφtd (m)

]
+
∑
6=

nj,m cos[δφj ], (29)

and

sdm =
∑
d

(1− etd (m),m)sin
[
δφ td(m)

]
+
∑
6=

nj,m sin[δφj ], (30)

where
∑
6= means that all terms for whichj =

td (m), 0 6 d < D, are omitted. The differences
between the above signal and the signal in a perfect
detector with no noise for the these two signals are

δcm = cm −
∑
d

cos
[
δφtd (m)

]
,

δsm = sm −
∑
d

sin
[
δφtd(m)

]
, (31)

and the expected total fluctuation is

σ 2= 〈(δom)2〉=D〈e2
m

〉+ (J −D)〈n2
m

〉
, (32)

which depends both uponD andJ , as expected. The
likelihood function is again of the form

L(Et , σ )∝ exp

[
− 1

2σ 2

M−1∑
0

(δom)
2

]
, (33)

where the argumentEt stands for all the parameters
describing each of theD tracks.

3.1. Approximations

Following the previous line of argument and ap-
proximations, the square of the track terms involves

∑
d1,d2

M−1∑
0

cos
[
δφtd1(m)

]
cos
[
δφtd2(m)

]∼ 1
2MD,

(34)

with a similar result holding for the sin terms. The
nondiagonal terms average to zero. The dependence
of the likelihood function on the track parameters then
again arises primarily from the cross term between
the data and the track term. This cross term then
factorizes:

L(Et, σ )=
∏
d

L(td, σ )=
∏
d

exp
[
Σ(d)/σ 2] (35)

where

Σ(d)=
∑
m

(
cm cos[δφ td (m)] + sm sin[δφ td(m)]

)
.

(36)

At this point the previous discussion can be fol-
lowed in detail and the results simply copied over.
Again defineθd = δφtd (0) and 1td(m) = td(m) −
td(0) so that

Σ(d)=Σc(d)cosθd −Σs(d)sinθd, (37)

whereΣc(d) andΣs(d) are given by Eq. (21) but with
the track function replaced bytd(m). The values of
td(0) that maximizeΣ , and the resultantΣmax are

tan
[
δφtd (0)

]=−Σs(d)

Σc(d)
and Σmax=

∑
d

Σ(d),

(38)

where Σ(d)2 = Σc(d)
2 + Σs(d)

2 = MC(td) with
C(td) defined in Eq. (24).

If the td(0) are treated as nuisance parameters, then
one has

L0(Et, σ )∝
∏
d

2π∫
0

dθd

2π
exp

[
1

σ 2

∑
m

Σ(d)

]
(39)

∝
∏
d

I0
[√
MC(td)/σ

2]. (40)
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The reduced likelihood function has factored into a
product of independent distributions.

4. Numerics and examples

It is convenient to scale the parameters so that the
two-dimensional plane containing the image has unit
dimensions. To that end definez=m/(M − 1) and

δφt (m)= δΦy(z), whereδΦ = δφJ with (41)

0< y(z) < 1, and 0< z < 1. (42)

All the hits now lie in the unit square. In order to de-
termine the best estimate of the track parameters, the
functionC(t) must be studied and its maximum value
determined. There are several approaches to this prob-
lem. We have chosen to use a simple histogramming
technique coupled with the Simplex method since they
directly generalize to more complicated track forms.
The Simplex method is discussed in the book Numer-
ical Recipes [14].

Since the function to be maximized,C(t), does not
depend upon the intercept of the track, it is expeditious
to change the parameterization of the track so that the
two degrees of freedom are as independent as possible.
The midpoint slope of the track and the curvature
around this value are suitable fitting parameters. The
parameterization of the track is therefore changed to

y(z)= k0+ 1

2
k1z(1+ z)+ 1

2
k2z(1− z), (43)

with

t0= Jk0, (M − 1)t1= J
2
(k1+ k2),

(M − 1)2t2= J
2
(k1− k2), (44)

thusC(t) becomesC(k). The slope parameter at the
midpoint in z is k1; the boundary conditions on the
track arey(0) = k0, and y(1) = k0 + k1. The track
fitting parameters are conveniently chosen to bek1 and
k2. The parameterδΦ is arbitrary, chosen during the
fitting process. This will be discussed further below.
The first step is to assume a value forδΦ and compute
the vectorscm andsm from the data.

The net transverse displacement in crossing the
detector isy(1)−y(0)= k1. It will be shown thatk1 is
well determined by the study ofC(k1, k2)while, as has
been previously noted,y(0) = k0 is determined only

within a discrete ambiguity. However, by examining
the hits in the original data atz = 0 and atz = 1, the
pair that differ by the fitted value of displacementk1
can be identified as the beginning and end point of the
track under question.

In the case of multiple tracks, the functionC(k)
possessesD maxima in the two-dimensional space
(k1, k2). Note that the maximum value ofC(k) is of
order∼M if the tracks are nondegenerate. IfDd tracks
are degenerate, i.e., have the same values of slope and
curvature butdifferent intercepts, then the maximum
of C(t) is of order∼D2

dM. Thus these degeneracies
can be estimated directly from the data and the values
of C(k) throughout the allowed region ink1 andk2.

An initial estimate of the number of tracks and the
values ofk1 can be made from a histogram of the
functionC(k) against the scaled slopek1. Form the
integral

C(k1)=
∫
dk2C(k1, k2) (45)

over the allowed range of values ofk2. The peaks
in k1 that are of orderM signify tracks. Two tracks
that have the same value ofk1 but distinctly different
values ofk2 produce a peak roughly twice as high.
Two degenerate tracks with the same value of bothk1
andk2 will produce a peak roughly four times as high.
This initial survey of the data will simplify the search
for all the relevant maxima ofC(k1, k2).

Now choosek1 equal to one of the peak values
of the histogram, sayK1. Perform a one-dimensional
search ink2 of C(K1, k2) for a peak, located atK2.
This simple low-dimensional search procedure could
be continued by alternating directions to locate the
position of the maxima. However it is convenient
at this point to invoke the Simplex method. The
required three starting simplexes are then initialized to
the neighborhood of this approximate maxima. Using
these as starting value, the ‘Uphill’ Simplex method
then searches the two-dimensional space until the
nearby (if our search was accurate) maxima is located.
This maximum point then yields an estimate for all
threeki parameters describing one track. This process
is repeated until there are no more maxima ofC(k)

which are of magnitudeM, i.e., large enough to be
true tracks.

Alternatively, as each track is located and fitted,
it can be subtracted from the data, i.e. the quantities
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c and s, before the next track is analyzed. As the
detection efficiency drops, this method will eventually
fail. A further (calculationally intensive) possibility
is to return to the original pixel data, eliminate the
‘hits’ from the data that belong to the fitted track, and
then repeat the entire process with the reduced data
set.

In the case of multiple tracks, the determination of
the values ofk1 and k2 for each track is improved
by using large values ofδΦ, i.e. short wave lengths,
to resolve the differences between the tracks. This,
of course, worsens the branch ambiguity in the value
of the interceptk0. Recalling Eqs. (22) and (38), and
resolving the ambiguity in the arctangent function by
requiring a maximum of the likelihood function, the
final result fork0 takes the form

δΦ kd(0)=−arctan

[
Σs(d)

Σc(d)

]
+ 2nπ. (46)

The final ambiguity inkd(0) is in steps of 2π/δΦ.
Thus the fitting procedure yields a discrete series
of possible values for the interceptk0. The correct
value can be inferred by rerunning the program at
an incommensurate value ofδΦ and finding the
common allowed value ofkd(0). Alternatively, one
may examine the original data set, armed with the
fitted values ofk1 andk2 for every track, looking for
the first and last pair of hits with the displacement
valuek1.

An example application of the procedure is illus-
trated in Fig. 3 which plots four tracks whose para-
meters are given in the first columns of Table 1. The
interaction region was set just off the lower left corner
of the plot. Note that this sneaky choice reduces the
problem of determining the correct branch of the in-
terceptk0. In this example,δΦ was equal to 200 and
M = 101. There were no noise hits added and the de-
tection efficiency was 100%. The histogram function
C(k1) is shown in Fig. 4. The top drawing plots the
histogram from the original data set. After the fit to
the first track has been subtracted, the histogram is re-
calculated on the modified data. This is plotted on the
left middle. The process is continued until the values
drop below the assigned threshold value. The branch
uncertainty in the determination ofk0 is 0.0314. Note
that the first track has ak0 value that is off by one cy-
cle, that is,k0= 0.0108+ 0.0314∼ 0.0422, which is
reasonably close to the input value of 0.045.

Fig. 3. A sample event with 4 tracks.

Table 1
Four tracks – ideal

input fitted

k0 k1 k2 k0 k1 k2

0.045 0.100 1.40 0.0108 0.101 1.43

0.012 0.800 0.40 0.0121 0.799 0.40

0.009 0.300 0.80 0.0115 0.299 0.78

0.001 0.600 1.20 0.0022 0.598 1.20

Table 2
Four tracks – noise

input fitted

k0 k1 k2 k0 k1 k2

0.045 0.100 1.40 0.011 0.102 1.41

0.012 0.800 0.40 0.014 0.798 0.38

0.009 0.300 0.80 0.010 0.301 0.78

0.001 0.600 1.20 0.002 0.601 1.20

In the next example, the noise and a finite detec-
tion efficiency were included. Noise was added by ran-
domly choosing one fifth of them values and adding a
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Fig. 4. A plot of the histogram C(k1) for zero noise and perfect detector efficiency as fitted tracks are removed.

Table 3
Four tracks – degeneracy

input fitted

k0 k1 k2 k0 k1 k2

0.01 0.100 1.20 0.005 0.100 1.29

0.01 0.100 1.00 0.014 0.100 0.90

0.01 0.100 0.80 0.014 0.100 0.74

0.01 0.100 0.10 0.012 0.100 0.08

noise hit uniformly distributed iny between zero and
one. Inefficiency was included by randomly omitting
one fifth of the data points. The results fluctuate some-
what from run to run; typical values are given in Ta-
ble 2.

Table 4
Four tracks – degen+ noise

input fitted

k0 k1 k2 k0 k1 k2

0.01 0.100 1.20 0.005 0.100 1.28

0.01 0.100 1.00 0.015 0.098 0.90

0.01 0.100 0.80 0.014 0.101 0.75

0.01 0.100 0.10 0.013 0.100 0.06

The histogram functionsC(k1) for this case are
shown in Fig. 5. Note that the peak values have
dropped and the background has increased relative
to those in Fig. 4; however the maxima are still
distinct.
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Fig. 5. The same histogram plot as in previous figure but with finite noise and detector efficiency.

In the final example, the effects of track parameter
degeneracy was explored. In Fig. 6 the four tracks
whose parameters are given in the first columns of
Tables 3 and 4 are plotted. Table 3 lists the values for
no noise and perfect efficiency while Table 4 includes
the effects of the noise and efficiency levels used in
Table 2.

Note that thek1 slope parameters were accurately
fitted, thek2 parameters were determined with less
accuracy, and thek0 intercepts have large fractional
errors.

5. Conclusions

The track fitting method developed here seems to
offer some advantages in actual implementation. For

the analysis of many events in the same detector,
which is the normal situation in high energy physics
experiments, many of the quantities can be precom-
puted and stored for use during an event by event
analysis. Efficient algorithms exist for locating (with
the required accuracy) the maximum ofC(t) in the
low-dimensional track parameter space. Clearly, fur-
ther testing of this algorithm in more realistic situa-
tions is required.
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Fig. 6. A sample event with 4 tracks with degeneracy.

Appendix A. Antenna arrays

It is the purpose of this appendix to map the problem
of fitting multiple tracks, or lines, to the problem of
determining the directions of arrival of waves incident
upon an antenna array. First, the antenna problem will
be stated. The discussion will be restricted to two
dimensions for simplicity; three-dimensional tracks
can always be projected onto lower dimensions. Only
straight line tracks will be discussed here. Extensions
to tracks with curvature is given in the text.

Antenna-arrival directions

Consider a straight line sensor array consisting of
M antenna elements aligned along thez-axis. The
location of themth sensor is denoted byzm. A pure
harmonic plane wave of constant amplitude is incident
upon the array, where

s(t)= s exp[−iωt], s = ρ exp[iφ]. (47)

The sensors are characterized by the array response
vector, which contains the phase lag at each sensor,
given by

a= [a0(θ), a1(θ), . . . , aM−1(θ)
]
, (48)

where am(θ) (0 6 m < M − 1) is the amplitude
induced at themth sensor by aunitplane wave arriving
from the directionθ . The collection of all the response
vectors over the range of interest in theta is termed the
array manifold.

Choosing the arbitrary phase of the wave at the 0th
sensor to vanish, the elements of the array response
vector are given by

am(θ)= exp[izm sinθ ], (49)

with a0(θ) ≡ 1 andz0 ≡ 0. Themth element of the
output vectoro(t) is the response ofmth sensor to the
incident wave; it is given by

om(t) = am(θ)s(t). (50)

Antenna-multiple sources

Now consider the case ofD sources whose waves
arrive at the array from different angles. The wave
from thed th (06 d <D − 1), source is

sd(t)= sd exp[−iωt], sd = ρd exp[iφd ]. (51)

Thus the output at themth sensor is the sum over the
sources

om(t)=
D−1∑

0

am(θd)sd (t). (52)

This can be written as a matrix equation by forming a
D-component column vector out of thesd ’s together
with a matrixA of M columns andD rows. Each row
is formed from theM-component vectora(θd). Then
one can write

o(t)= A(θ)s(t). (53)

Armed with this review, the discussion will now
switch to track fitting.

Appendix B. Linear track fitting

Assume that the data for thed th track reflects hits
that are along a line

xm(d)= x0(d)+ zm tanθd, (54)

wherex0(d) is the intercept and tanθd is the slope
of the track. We have also assumed perfect detection
efficiency and no noise hits. Now formally define
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‘signals’ given by the sum over all theD tracks
as

om =
D−1∑
d=0

exp
[
ikxm(d)

]

=
D−1∑
d=0

exp
[
ikzm tanθd

] · exp
[
ikx0(d)

]
(55)

≡
D−1∑
d=0

am(θd) · sd , (56)

wherek is a parameter to be chosen later for conve-
nience and we have introduced the quantities

sd = exp
[
ikx0(d)

]
and

am(θ)= exp
[
ikzm tanθ

]
. (57)

Now form the discrete Fourier transformO(t) of
the signal vectoro with the transform variable scaled
by k:

O(t)=
M−1∑
m=0

om exp[−iktzm]

=
D−1∑
d=0

sd

M−1∑
m=0

am(θd)exp[−iktzm] (58)

=
D−1∑
d=0

sd

M−1∑
m=0

exp
[
izmk(tanθd − t)

]
. (59)

As a function of the scaled transform variablet , the
functionO(t) has a maximum whent ∼ tanθd .

This is easily illustrated if the array has uniform
spacing,zm = mδz. The sum overm can then be
performed in closed form with the result

O(q)=
D−1∑
d=0

sd exp
[
i(M − 1)1d

]sin(M1d)

sin(1d)
, (60)

where1d = 1
2kδz(tanθd − t). The functionO(t)has a

maximum whenever1d vanishes. This will eventually
allow the determination of the anglesθd for all d . For
example, if the tracks are well separated in angle, then
as the parametert is varied the real part will have a
maximum att = te = tanθe. For this value oft the
output signal is

O(te)=Mse +
∑
d 6=e

sd exp
[
i(M − 1)1d

]
× sin(M1d)

sin(1d)
(61)

∼Mse +O(1). (62)

The other tracks will not yield contributions of order
M due to oscillations; the value ofkδz is chosen
to insure this cancellation. This result also allows
a lowest order estimate of the intercept fromse ∼
O(te)/M.

Note that the track fitting problem has been trans-
formed into an antenna problem with the simple re-
placement of tanθ by sinθ . The reason for this is that
in the antenna problem, the waves travel in a direc-
tion perpendicular to the wave front. The track fitting
problem has ‘waves’ that move perpendicular to the
z-direction; the resultant phase lags are therefore dif-
ferent functions of the angle.

Degeneracy

If two tracks, saye andf , have essentially the same
angle, then the sum becomes

O(te)=M(se + sf )
+
∑
d 6=e,f

sd exp
[
i(M − 1)1d

]sin(M1d)

sin(1d)
(63)

∼M(se + sf )+O(1). (64)

In this case, the absolute square ofO(t) becomes

|O(te)|2∼M2|se + sf |2
= 2M2{1+ cos(k[x(e)− x(f )])}, (65)

and the magnitude depends upon the relative phase,
that is, the distance between the parallel tracks. By
studying the variation withk, the presence of degen-
erate angles can be inferred from the magnitude com-
pared toM2, and the displacement between the tracks
can be estimated.
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