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Abstract

We introduce the Probabilistic Multi-Hypothesis Tracking (PMHT) algorithm for particle tracking in high-energy physics
detectors. This algorithm has been developed recently for tracking multiple targets in clutter, and it is based on maximum
likelihood estimation with help of the EM algorithm. The resulting algorithm basically consists of running several iterated and
coupled Kalman filters and smoothers in parallel. It is similar to the Elastic Arms algorithm, but it possesses the additional
feature of being able to take process noise into account, as for instance multiple Coulomb scattering. Herein, we review its
basic properties and derive a generalized version of the algorithm by including a deterministic annealing scheme. Further
developments of the algorithm in order to improve the performance are also discussed. In particular, we propose to modify the
hit-to-track assignment probabilities in order to obtain competition between hits in the same detector layer. Finally, we present
results of an implementation of the algorithm on simulated tracks from the ATLAS Inner Detector Transition Radiation Tracker
(TRT).  1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Developments in track finding and fitting during the
last one and a half decades can roughly be divided into
two separate categories. The first category consists of
methods or algorithms based on the now widely used
Kalman filter [1] or variations thereof. The Kalman
filter performs a least-squares fit of the data in a track
candidate to a given track model. One of the main
advantages of the application of this filter compared
to a global least-squares fit is that process noise,
as for instance multiple Coulomb scattering, can be
taken into account locally, i.e. there are no long-range
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correlations between the observations. In addition,
by supplementing the filter with a smoother, optimal
estimates of the track parameters can be evaluated
anywhere along the track. However, the application of
the Kalman filter requires that the pattern recognition
problem, i.e. the measurement-to-track assignment
procedure, has been completely resolved in advance.
If not, one can propose to make a list of all possible
combinations of points inside a track candidate that
constitute a valid track and run the filter on all these
combinations. In the end, one picks the combination
with the least value of the chisquare statistic as
the fitted track. One major disadvantage with this
approach is that the number of combinations can get
very large when the density of measurements is high,
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as will be the case in future experiments at the Large
Hadron Collider (LHC) at CERN.

More recently, there have been attempts to apply
the Gaussian-sum filter (GSF) to problems related to
tracking. The GSF takes the form of several Kalman
filters running in parallel and is therefore a relatively
straightforward extension of the original Kalman filter.
It has turned out to be useful in situations where one
encounters long-tailed or non-Gaussian measurement
noise [2], and it has also successfully solved the
problem of simultaneous track finding and fitting
to data coming from a detector with ambiguous
measurements [3]. The major problem with the GSF
in the latter case is its lack of robustness towards
noise, i.e. its behaviour in the case where none of
the measurements in some detector layer is coming
from the track to be fitted. In its original formulation,
the GSF will always believe that at least one out of
possibly several measurements in a layer originates
from the correct track, thereby inducing a bias in
the estimates of the track parameters. This can in
principle be cured, but the computational cost will
rapidly increase.

The most recent development in the class of filters,
the Deterministic Annealing Filter (DAF) [4], has been
constructed in an attempt to overcome the shortcom-
ings of the GSF. It is an iterated Kalman filter with
reweighted observations and is an example of an EM
algorithm [5], well known in statistics. The filter is
by construction robust, and the deterministic anneal-
ing scheme included efficiently prevents the algorithm
from ending up in a local maximum on the likeli-
hood surface. It is equivalent to the Elastic Arms al-
gorithm [6] formulated for single track candidates, but
it has the additional feature of, if necessary, including
process noise. Moreover, it does not require the min-
imization of a nonquadratic energy function, which is
generally a nontrivial task.

The second category of developments consists of
global tracking algorithms. Examples of these are the
Elastic Tracking algorithm by Gyulassy and Harlan-
der [7] and the previously mentioned Elastic Arms al-
gorithm. The main advantage of these methods com-
pared to the different filter algorithms described above
is the fact that they can handle situations where a hit
possibly can belong to several tracks. This might oc-
cur for instance in the reconstruction of very narrow
jets. The filter methods are by construction working

on single track candidates, so they lack at the present
stage the flexibility provided by the global algorithms.
On the other hand, the global algorithms do in general
not exhibit the same statistical rigour as the filters. It
is therefore desirable to construct a formalism which
is able to extract the best properties of both the filters
and the global methods and combine these.

In this work, we introduce a novel algorithm for
track finding and fitting in particle detectors: the
Probabilistic Multi-Hypothesis Tracking (PMHT) al-
gorithm. This algorithm has recently been developed
for tracking multiple targets in clutter [8]. It is based
on the maximization of a likelihood structure by aid
of the EM algorithm, and it fits the data of a colli-
sion event to a hypothesized number of tracks. The
algorithm takes the form of several iterated and cou-
pled Kalman filters and smoothers working in parallel.
Thus, the PMHT algorithm exhibits the same power of
global tracking as the Elastic Arms algorithm. Further-
more, because the backbone of the PMHT is Kalman
filters, it is as statistically rigorous as the filter meth-
ods described above. In order to make the algorithm
work even better, we propose some modifications to
the original formulation of the PMHT. One of these
is a generalization of the algorithm to include a deter-
ministic annealing scheme, and we will show that this
gives significant improvements in the accuracy of the
estimates of the track parameters. With these modifi-
cations, the PMHT is in the single-track case and un-
der the assumption of Gaussian noise equivalent to the
DAF. The PMHT can therefore also be regarded as a
multi-track generalization of the DAF.

The paper is organized in the following way. In Sec-
tion 2 we review the basic properties of the PMHT
algorithm. We introduce the modifications and gener-
alizations of the algorithm in Section 3. In Section 4
we bring results from experiments performed on sim-
ulated data from the ATLAS Inner Detector TRT. The
paper is concluded in Section 5 with a summary of the
main results and a brief outlook to future research.

2. Review of basic properties of the PMHT

Detailed descriptions of all aspects of the PMHT
algorithm exist in the literature [8]. To our knowledge,
however, the application of the algorithm to tracking
problems in high-energy physics detectors is novel,
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and we therefore assume little or no knowledge of it
by the readers of this paper. Therefore we will herein
give a review of the basic features of the algorithm.

The scenario is a given collection of measurements
from a particle detector, and we want to fitM tracks to
these measurements in an optimal manner. The output
of the algorithm is the estimated state vectors of the
tracks. The numberM of tracks has to be hypothesized
beforehand, as well as the initial values of the track
parameters. A plausible way of tackling the problem in
practice would be to first apply some kind of heuristic
pattern recognition procedure, for instance a Hough
transform, to define regions of interest in the detector
and give initial estimates of the track parameters.
Depending on the complexity of the problem, i.e.
the density of measurements and tracks, the PMHT
algorithm can then be used either on each track
candidate independently or on several neighbouring
candidates simultaneously. If one chooses to treat each
track candidate independently, the algorithm is used to
discern the true track points from noise hits, hits from
other tracks and possibly also mirror hits, if the hits
arise from a detector with ambiguous measurements.
This case is the one to be considered in the simulation
experiments of this work. If several track candidates
are taken into account at the same time, the algorithm
is used also to decide which track the measurements
are assigned to.

The PMHT algorithm is derived by first construct-
ing a probabilistic likelihood function. This likelihood
is a function of the measurements{mik} in the colli-
sion event and the state vectors{xkm}. Heremik de-
notes measurementi (i = 1, . . . , nk) in layer k (k =
1, . . . ,K), andxkm represents the state vector of track
m (m= 1, . . . ,M) in layerk. We assume that the de-
tector can be represented as a collection of shells or
layers and that all measurements therefore come from
these layers. The likelihood is also a function of theas-
signment variables{kik} (kik = 1, . . . ,M) associated
with the measurements. For instance,kik = m means
that measurementmik is assigned to trackm. It is one
of the crucial features of the PMHT algorithm that
these assignment variables are modelled as stochastic
variables and that the parameters describing their dis-
tributions should either be estimated by the algorithm
or be given in some other way. The PMHT algorithm
requires thus by construction no “hard” measurement-
to-track assignments. It should be noted that with re-

spect to this feature, the PMHT differs from the orig-
inal formulation of the Elastic Arms algorithm. In the
Elastic Arms algorithm the assignment variables are
stochastic as long as the temperature is different from
zero, but the algorithm is formulated in such a way
that theT → 0 limit always should be taken in the
end. The temperature is introduced merely as a tool
to avoid ending up in a local extremum of the energy
function during the search for the global minimum. It
has recently been shown [4], however, that the most
accurate estimates for the Elastic Arms algorithm are
not found in the limitT → 0, but rather at a temper-
ature which is related to the variance of the measure-
ment error. This indicates that an approach based on
hard assignments is suboptimal.

The construction of the likelihood function is based
on a number of independence assumptions. Firstly, the
measurements are assumed independent, conditioned
on the state vectors and the assignment variables.
Secondly, the state vectors in layerk are assumed
independent, conditioned on the state vectors in layer
k − 1. Finally, all assignment variables are assumed
independent. This gives the fundamental likelihood
structure of the PMHT,

P(M,X,K)=
{

M∏
ν=1

φν(x0ν)

}

×
K∏
k=1

{[
M∏
s=1

φs(xks |xk−1,s)

]

×
nk∏
i=1

[
πkmζm(mik|xkm)|m=kik

]}
.

(1)

Hereφν(x0ν) is the a priori probability density func-
tion of state vectorν, φs(xks |xk−1,s) is the probabil-
ity density function of state vectors in layer k, con-
ditioned on state vectors in layer k − 1, nk is the
number of points in layerk, πkm = P(kik =m) is the
prior probability that a measurement in layerk origi-
nates from trackm, andζm(mik|xkm) is the probability
density function of measurementmik , conditioned on
state vectorxkm. The quantitiesM , X andK denote
the collection of all measurements, state vectors and
assignment variables, respectively. The prior probabil-
itiesΠ = {πkm} can be estimated by the algorithm, but
other assumptions are also possible.
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One possible way to proceed would now be to cal-
culate the posterior probabilities of the state vectors
and the assignment variables, given the data, and find
the maximum of this function with respect to the state
vectors and the assignment variables. Such an ap-
proach would yield themaximum a posterioriesti-
mate of these quantities. However, this would require
a complete enumeration of all possible configurations
of the assignment variables and is therefore compu-
tationally unfeasible. The approach of the PMHT is
to consider the assignment variables asmissing data
and obtain the estimates as the maximum of the mar-
ginal probability density functionP(M,X) with re-
spect to the state vectors and possibly the prior proba-
bilities. This can effectively be done by aid of the EM
algorithm. In fact, the convergence theorem by Demp-
ster et al. [5] guarantees that in this case we will find
at least a local maximum of the marginal probability
density function. It can be noted that the estimates are
found without knowledge of the probabilities of any
particular configuration of the assignment variables.
The effect of these different configurations is accumu-
lated in the marginal. This aspect of the PMHT is very
similar to the marginalization that is found in the Elas-
tic Arms algorithm.

The EM algorithm consists of an expectation part
and a maximization part. The expectation is done by
defining a function

Q(X,Π|X′,Π ′)=
∑
{K}

logP(M,X,K;Π)

×P(K |M,X′;Π′), (2)

where the sum is over all configurations of the assign-
ment variables. We have herein included the depen-
dence on the prior probabilities explicitely in the ex-
pressions. The primed quantities are supposed to be
fixed during one EM step, while the others are vari-
able. The measurementsM are of course fixed and
viewed as constant quantities in all operations. The
probability density of the assignment variables given
all the other quantities can be shown to be

P(K |M,X;Π)=
K∏
k=1

nk∏
i=1

wiks |s=kik , (3)

with

wiks = πksζs(mik|xks)∑M
m=1πkmζm(mik|xkm)

. (4)

The quantitywiks is to be interpreted as the probabil-
ity that measurementmik is assigned to tracks, con-
ditioned on the state vectorsX and the collection of
measurementsM . Due to the independence assump-
tions stated earlier this probability does not depend on
the locations of any other measurements in the same
layer.

By writing out the probability density functions
explicitely one can obtain an analytic expression of the
Q function of Eq. (2). It can be written

Q=
K∑
k=1

Qk,Π +
M∑
m=1

Qm,X, (5)

with

Qk,Π =
nk∑
i=1

M∑
m=1

w′ikm logπkm, (6)

Qm,X = logφm(x0m)+
K∑
k=1

{
logφm(xkm|xk−1,m)

+
nk∑
i=1

w′ikm logζm(mik |xkm)
}
, (7)

where the primes on the assignment probabilities
denote that they are a function ofX′ andΠ ′.

The second part of the EM step is to maximize
this Q function with respect to the parametersΠ
and the state vectorsX, and due to the structure of
Eq. (5) we see that the maximization problem reduces
to independent maximizations of theQk,Π ’s and the
Qm,X ’s, respectively. ForQk,Π this task can be solved
by aid of Lagrangian multipliers, and the result is

πkm = 1

nk

nk∑
i=1

w′ikm. (8)

The same task forQm,X is more complicated. How-
ever, the following relation can be relatively straight-
forwardly derived from Eq. (7):

exp(Qm,X)∝ φm(x0m)

K∏
k=1

{
φm(xkm|xk−1,m)

× ϕ(m̃km;Hkxkm, Ṽkm)
}
, (9)

with effectivemeasurements and covariance matrices
defined by
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m̃km = 1∑nk
j=1w

′
jkm

nk∑
i=1

w′ikmmik, (10)

Ṽkm = Vk∑nk
j=1w

′
jkm

. (11)

We have now made the assumption that the mea-
surement probability density function is Gaussian:
ϕ(x;µ,V ) represents a Gaussian with mean vectorµ
and covariance matrixV . If we further assume that
the track model probability density functionφ also
is Gaussian, Eq. (9) can be seen to be the probabil-
ity density function of a standard Kalman filter. The
only difference is that the measurements and the co-
variance matrices are replaced by the effective mea-
surements and the effective covariance matrices de-
fined above. Therefore, the output of the Kalman filter
and smoother is exactly the state vectors maximizing
Eq. (9). This completes the maximization part of the
EM step.

The PMHT algorithm will then be as follows:
(i) Initialize state vectors and prior probabilities.
(ii) Repeat until convergence.

(a) Update the assignment probabilities accord-
ing to Eq. (4), using the prior probabilities
and the state vectors from the previous iter-
ation.

(b) Update the prior probabilities, the effective
measurements and the effective covariance
matrices according to Eqs. (8), (10) and (11),
respectively, using the updated assignment
probabilities.

(c) Update the state vectors by runningM
Kalman filters and smoothers with the up-
dated effective measurements and effective
covariance matrices as input.

(iii) Store state vectors.
In summary, the PMHT is a global tracking algorithm
which in the case of Gaussian measurement errors and
process noise works by iteratively runningM coupled
Kalman filters and smoothers in parallel. Inclusion of
process noise is straightforwardly done in the same
way as for the standard Kalman filter. In the Gaussian
case the algorithm does not require the optimization
of a nonquadratic objective function. However, the
formalism is not restricted to Gaussian noise only.
From Eq. (7) it can be seen that any probability density
function of process noise and measurement noise can
be taken into account. In general, in order to obtain the

state estimates one will then have to apply numerical
optimization techniques. The computational cost will
of course be larger in the general case than in the
Gaussian case.

3. Modifications and new features of the
algorithm

The EM algorithm is indeed a very powerful tool to
obtain good estimates in situations where the data is
incomplete. In our case the assignment variables can
be viewed as the missing data, i.e. we do not have the
information about the correct hit-to-track assignments.
Nevertheless, it is known that the standard EM algo-
rithm has some unwanted properties. One of these is
the fact that the EM algorithm is guaranteed to con-
verge only to a local maximum of the likelihood func-
tion. If this function has many peaks, the performance
of the algorithm will become very sensitive to the ini-
tialization procedure. In other words, the starting val-
ues of the quantities to be estimated have to be very
close to the global maximum to obtain the optimal per-
formance.

Several modifications of the EM algorithm have
been proposed in order to cope with this problem. One
of these is the Stochastic EM algorithm (SEM) [9].
Instead of calculating the fullQ function of Eq. (2),
which might very well be computationally intractable,
it draws samples of the assignment variablesK ac-
cording to the distributionP(K |M,X′;Π ′) and calcu-
lates the corresponding maximum likelihood estimate
of the complete data likelihood functionP(M,X,K;
Π). It can be shown that for each SEM iteration there
is a nonzero probability of choosing an updated value
of the estimated parameters which decreases the in-
complete data likelihood function. In contrast to the
standard EM algorithm, the SEM will therefore in
general not be trapped in the closest local maximum.
A possible disadvantage of this method is that for
each iteration one has to sample a probability distribu-
tion, which in a computer implementation means that
a random number generator has to be called maybe a
large number of times. The computational cost of this
method might therefore be quite large.

In this paper, we propose a generalization of the
PMHT algorithm based on a recent development: the
Deterministic Annealing EM algorithm (DAEM) [10].
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The DAEM has also been constructed in an attempt to
overcome the problem of ending up in a local maxi-
mum during the search. It basically works by smooth-
ing out the likelihood surface at high temperatures,
leading the search into the correct region of parameter
space as the temperature gets lower. The final step of
the DAEM is always equivalent to the corresponding
standard EM algorithm. The PMHT with the Deter-
ministic Annealing EM algorithm corresponds in the
linear-Gaussian case to a very simple extension of the
standard PMHT: one simply defines a series of temper-
atures or measurement errors and runs the PMHT to
convergence at each of the temperatures sequentially.
This can be seen by realizing that the DAEM uses a
modifiedP(K |M,X;Π) (denotedPβ ) during the first
iterations to calculate theQ function of Eq. (2),

Pβ(K|M,X;Π)= P(M,X,K;Π)β∑
{K}P(M,X,K;Π)β

, (12)

where 0< β 6 1 andβ = 1/T , T denoting the tem-
perature. Forβ = 1,Pβ is the same asP(K |M,X;Π).
The output of the PMHT at one temperature serves
as input to the PMHT at the next one. One should
start with a large value of the measurement error in
the expressions for the assignment probabilities (see
Eq. (4)), successively decrease this during the iter-
ations and obtain the final estimates at the nominal
value of the measurement error. It can be noted that
with this approach no random numbers have to be gen-
erated. In the next section, we will show that the gener-
alization of the PMHT including such a deterministic
annealing scheme leads to significant improvements in
the accuracy of the estimated parameters.

There have also been earlier attempts [11] to modify
the PMHT by increasing the measurement error during
the first iterations, but apparently without any great
success. According to the DAEM, however, this is the
correct thing to do when the noise can be described
by a Gaussian probability density function. We would
also like to point out that the DAEM algorithm is
not restricted to this assumption. Eq. (12) is valid for
any probability density, and the DAEM thus gives
a well-defined prescription of how to formulate a
deterministic annealing PMHT also in the case of non-
Gaussian noise. The approach of this work is therefore
more general than what has been presented earlier.

As mentioned earlier, due to the independence
assumptions applied in the construction of the PMHT

likelihood structure, the probability of assigning a hit
to a specific track does not depend on the locations of
the other measurements in the same layer. In this work
we propose to modify these assignment probabilities
in order to obtain competition between hits in the same
layer. We will therefore use weights with the same
structure as those in the DAF and the Elastic Arms
algorithm of earlier work [4],

wiks = ϕ(mik;Hkxks,Vk)
nk · ϕ(λ;0,Vk)+∑nk

j=1ϕ(mjk;Hkxks,Vk)
.

(13)

The weights have been stated for the case of single
tracks, since it is this case we will consider in the
simulation experiments of the next section. It is not
entirely obvious how the weights should look in the
multi-track case. In fact, this is the subject of an
ongoing study, and the topic will be addressed in a
later paper. The quantityλ defines a cutoff in the same
sense as for the Elastic Arms algorithm, and it can be
seen that the prior probabilities do not appear in the
expression of the weights. This is due to the fact that
there is no reason to believe beforehand that any track
deposits energy in the detector more often than any
other one. The prior probabilities should therefore be
equal and, hence, cancel out. The simulations will be
used to determine a suitable magnitude forλ.

Because of the modification of the weights the al-
gorithm also has to be slightly modified. The expec-
tation part of one basic EM step will now be to up-
date the assignment probabilities using the state vec-
tors from the previous iteration. From these updated
assignment weights the effective measurements and
covariance matrices are recalculated. The maximiza-
tion part is to update the state vectors by using the
updated effective measurements and covariance ma-
trices as input to the Kalman filters and smoothers.
One major point with the modified weights is that they
now depend on the locations of all measurements in a
layer. It will be demonstrated in the next section that
this also leads to improvements in the accuracy of the
estimated track parameters compared to the standard
case of Eq. (4).

With the modifications described above, the PMHT
is in the single-track case identical to the DAF. It is
easy to see that the filter and covariance matrix up-
dates of the PMHT, using the effective measurements
and effective covariance matrices given in Eqs. (10)
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and (11), are totally equivalent to the corresponding
updates of the DAF, as stated in [4]. The full PMHT
is therefore, under the assumption of Gaussian noise,
a multi-track generalization of the DAF. In addition,
the algorithm can be formulated to handle any kind
of process noise and measurement errors. This also
makes it more general than the Elastic Arms algo-
rithm, because the latter is optimal only in the case of
Gaussian measurement errors and negligible process
noise.

4. Simulation experiments of tracks from the
ATLAS Inner Detector TRT

This section presents results from simulation exper-
iments of single tracks from the barrel part of the AT-
LAS Inner Detector TRT. A description of all the de-
tails of this detector can be found in [12]. The TRT
consists of drift tubes, the measurements are therefore
ambiguous. The information of each observation con-
sists of the radius of the layer, the polar angleΦ of the
centre of the straw, the drift distance, the sign ofz and
the track label or KINE number of the particle causing
the hit. Since our measurements are two-dimensional,
three parameters are needed to uniquely define a track.

The data sample consists of 9800 “perfect” tracks,
i.e. no material effects have been taken into account.
However, a measurement error of 250µm has been
simulated. The correct solution of the left–right ambi-
guity is known and used in the analysis of the results,
but not during the reconstruction phase. The PMHT re-
quires an initial guess of the track parameters, and this
is provided by a least-squares fit of all points in a track
candidate to a straight line in the(R,Φ)-projection. In
this projection, all tracks with transverse momentapT
larger than about 2 GeV/c are approximately straight.
Since all our simulated tracks havepT > 1 GeV/c, fit-
ting to a straight line is justified. The accuracy of the
track parameters is assessed by the generalized vari-
ance, i.e. the determinant of the covariance matrix of
the residuals of the estimated track parameters with re-
spect to the true values. All generalized variances are
given relatively to the generalized variance obtained
by a least-squares fit to only the track points, the mirror
hits being turned off. This corresponds to the case of
a complete knowledge of all hit-to-track assignments

Fig. 1. Relative generalized variance for tracks with mirror hits but
without noise hits, as a function of the cutoff divided by the standard
deviation of the measurement error.

and therefore sets a lower limit on the spread of the
estimates of the track parameters.

We will first investigate the effect of the adjusted
assignment probabilities, as given in Eq. (13), on the
accuracy of the estimates of the track parameters.
This has been done by running the algorithm on
track candidates consisting of track points together
with their corresponding mirror hits. A plot of the
relative generalized variances in two cases – adjusted
assignment weights and standard assignment weights
– as a function of the cutoffλ, in terms of standard
deviations of the measurement error, is shown in
Fig. 1. We have also included a cutoff term in the
standard weights. The structure of these is therefore
similar to the adjusted weights given in Eq. (13), the
only difference being that the sum in the denominator
consists of the one term with indexi. An annealing
schedule has been included and is the same in both
cases. Since the standard weights do not exhibit
any competition between a hit and its corresponding
mirror hit, the optimal cutoff has to be a compromise
between not including too many mirror points and not
excluding too many true track points. For the adjusted
weights, however, the competition implies that the
mirror points usually are given a low weight. The cut
should therefore be as loose as possible in order not to
lose any good points, and the simulation results indeed
confirm this picture. The optimalVrel with the standard
weights is 1.85 times larger than the optimalVrel with



84 A. Strandlie, J. Zerubia / Computer Physics Communications 123 (1999) 77–86

Fig. 2. Relative generalized variance for tracks with mirror hits
and noise hits, as a function of the cutoff divided by the standard
deviation of the measurement error. The noise level is 10%.

the adjusted weights, so the gain in accuracy with the
adjusted weights is significant.

The results of another experiment are shown in
Fig. 2, and here noise has been included. This has
been done by replacing the correct drift distance by
a random one with 10% probability, which means that
for some observations both the hit and the mirror hit
are wrongly positioned. Again the relative generalized
variances have been plotted as a function of the cutoff
in terms of standard deviations of the measurement
error. Since some of the hits now are pure noise, the
optimal choice of the cutoff for the case of adjusted
weights also has to be a compromise of the same
type as the one above mentioned. At the optimal
cutoff values the generalized variance for the case of
standard weights is 1.58 times larger than for the case
of adjusted weights.

We will then proceed to investigate the influence of
the annealing on the accuracy of the estimates. The
algorithm therefore has been run both with and with-
out annealing on tracks with a noise level of 10%.
The annealing schedule adopted foresees three differ-
ent values of the measurement error. At each of the
two largest values of the measurement error only one
pass of the filter and the smoother has been performed,
but in order to make the algorithm converge, four iter-
ations have been allowed at the final, nominal value
of the measurement error. In the case of no annealing
we have made six EM iterations, making the comput-

Fig. 3. Fitted tracks for the PMHT algorithm with and without
deterministic annealing.

ing time the same as in the annealing case. Fig. 3 il-
lustrates the difference in behaviour for one specific
track. The plot is shown in the(R,Φ)-projection. It
is here seen how the plain PMHT obviously ends up
in a local maximum of the likelihood function dur-
ing the EM steps, due to a nonperfect initialization of
the track parameters. The PMHT with annealing, how-
ever, is able to recover from this and seems to have
found the global maximum. The annealing thus makes
the algorithm much less sensitive to the quality of the
initialization. In the general case this is a very attrac-
tive feature, since one often will encounter problems
where a good initialization is difficult to achieve.

Fig. 4 shows the different generalized variances
again as a function of the cutoff. Notice that we
have used a semi-logarithmic scale. The lowermost
curve in this plot is of course exactly the same as
the lowermost curve in Fig. 2. Without annealing, the
accuracy improves as the cutoff increases. This means
that with a loose cut, the algorithm more rarely tends to
end up in a local maximum of the likelihood function.
Nevertheless, note that the generalized variance in the
optimal cutoff region is worse for the plain PMHT by
more than three orders of magnitude. There is a vast
improvement in accuracy due to the annealing in this
case.

In order to check out the robustness of the PMHT
we have also run the algorithm on track candidates
with a noise level of 20%. The best result ofVrel is
now around 11.0, and this value is about 2.7 times
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Fig. 4. Relative generalized variance for tracks with mirror hits
and noise hits, as a function of the cutoff divided by the standard
deviation of the measurement error. The noise level is 10%.

larger than the corresponding value at 10% noise. Note
that on average this implies an increase in the standard
deviations of the estimated track parameters of about
18% only.

5. Conclusions and outlook

In this paper, we have introduced the PMHT algo-
rithm for particle tracking in high-energy physics de-
tectors. It is a global tracking algorithm with similar-
ities to the Elastic Arms algorithm, but with the addi-
tional feature of including material effects in the form
of process noise in the formalism. We have proposed
two new features of the PMHT algorithm in this work.
One of them is to adjust the assignment probabilities
in order to obtain competition between hits in the same
detector layer. The other one is a generalization of the
algorithm to include a deterministic annealing scheme.
By means of simulation experiments of tracks from the
ATLAS Inner Detector TRT, both of these proposals
have been shown to significantly improve the accuracy
of the estimated track parameters.

With the improvements included, the PMHT is in
the single-track case equivalent to the DAF. The full
PMHT is therefore, under the assumption of Gaussian
noise, a multi-track generalization of the DAF. In
addition, the PMHT can be formulated to handle any
kind of assumptions regarding the functional forms of

the noise probability density functions. The PMHT
with deterministic annealing is well-defined also in
this very general situation. In contrast, the Elastic
Arms algorithm always does a global least-squares
fit in the low-temperature limit, regardless of the
structure of the underlying probability densities, and
is therefore optimal only in the case of Gaussian
measurement errors and negligible process noise.

Even though the PMHT has shown to perform
very well indeed on single track candidates, the full
power of the algorithm will not be exhibited until
one considers the case of possibly several tracks
competing for the same hit. This might happen for
instance in very narrow jets. It would therefore be
very interesting to see how the PMHT performs
under such conditions. It is not obvious how to
formulate the assignment weights in the multi-track
case. These topics are currently under investigation,
and the outcome of the study will be presented in a
subsequent paper.
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