b Computer Physics
;g _ Communications
ELSEVIER Computer Physics Communications 112 (1998) 183-190

JavaFit: a platform independent program for interactive nonlinear
least-squares fitting using the Levenberg—Marquardt method
A.W. Robinson !

Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

Received 1 November 1997; revised 2 April 1998

Abstract

The JavaFit program is a package for carrying out interactive nonlinear least-squares fitting to determine the parameters
of physical models from experimental data. It has been conceived as a platform independent package aimed at the relatively
modest computational needs of spectroscopists, where it is often necessary to determine physical parameters from a variety
of spectral lineshape models. The program is platform independent, provided that a Java runtime module is available for
the host platform. The program is also designed to read a wide variety of data in ASCII column formats produced on DOS,
Macintosh and UNIX platforms. © 1998 Elsevier Science B.V.

PACS: 0.2.60.Ed; 82.80.Pv; 82.80.Ch
Keywords: Interactive; Nonlinear least-squares; Levenberg-Marquardt; Optimisation; Spectroscopy; Model fitting

PROGRAM SUMMARY Programming language used: Java

Title of program: JavaFit Memory required to execute with typical data: case dependent
Catalogue identifier: ADIL No. of bytes in distributed program, including test data, etc.:
92626

Program Summary URL:

http://www.cpc.cs.qub.ac.uk/cpe/ summaries/ ADIL Distribution format: uuencoded compressed tar file

Other software required: A Java runtime interpreter, or the Java

Program obtainable from: CPC Program Library, Queen’s Uni-
Development Kit, version 1.0.2

versity of Belfast, N. Ireland

Keywords: Interactive, nonlinear least-squares, Levenberg—

Licensing provisions: none . -
Marquardt, optimisation, spectroscopy, model fitting

Computers: designed for any machine capable of running Java,

developed on Macintosh 7200/75, also run on PC-Pentium-100 Nature of physical problem
Interactive least-squares fitting of analytical models of spectra

Operating systems under which the program has been tested: lineshape functions to electron spectroscopy spectra.

MacOS 7.5.5, Linux 2.0.27 (Red Hat release 4.6)
Method of solution

Te o t)\ brouti hich calculates theoretical
lE—mail: andrew.robinson@physics‘org The user mus supply a subroutine whicn ¢ ulates eoretical

0010-4655/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0010-4655(98)00052-6

184 A.W. Robinson/Computer Physics Communications 112 (1998) 183-190

values of the quantities to be fitted and their first partial deriva-
tives to the adjustable parameters.

Dypical running time
Problem dependent.

LONG WRITE-UP

1. Introduction

One of the most frequent tasks which the spectro-
scopist is faced with, is the fitting of experimental data
to trial lineshapes. There may be various reasons for
this, such as the necessity to determine the area under
the lineshape, to determine the width of spectral func-
tions, in order to understand the physical processes
which lead to line broadening, or to deconvolute over-
lapping lineshapes, when the instrumental resolution
is insufficient to distinguish between closely spaced
peaks. In general this type of procedure typically has a
data set ranging from 50-1000 points, equally spaced
in the x-dimension (usually an energy or frequency,
which is set by the instrumentation), and with an
intensity measurement as the y-data. This data has
been frequently fitted using the Levenberg-Marquardt
method [1,2]. One of the main difficulties with this
analysis has often been the lack of a platform indepen-
dent package to do this type of fitting on. As most ex-
perimental systems are run by a variety of microcom-
puters, including Macintosh and PC-compatible types,
it has often been difficult to transfer fitting programs
between laboratories. A further complication is the file
format used by various experimental groups, research
laboratories and experimental facilities, which, while
generally being of columns of data in ASCII format,
often have a bewildering variation in terms of num-
ber of header or footer lines, and in data separation
characters.

The JavaFit program is designed to provide the spec-
troscopist with a data-fitting tool which may be used
on many different machines, but which will always run
in the same manner, even though the “look and feel” of
the program is dependent on the operating system. It
is designed to read a wide variety of ASCII columnar
format data files, produced by UNIX, PC and Macin-
tosh computers without any further processing of the
data to remove or change line termination characters.
This can be a very time consuming process for the

working scientist, especially when a large number of
files have to be processed.

The user has to provide a function that simulates
the particular spectral lineshape being modelled. In
the particular case of the JavaFit implementation de-
scribed here, the lineshape is that of multiple spin-
orbit split doublets with a Voigt line profile [3]. We
have used this lineshape to model photoemission spec-
tra from the Silicon 2p photoemission level for a Sil-
icon layer adsorbed on a Copper (111) surface [4]
and test data is provided from this adsorption system.

The approach to solution of the problem is an in-
teractive graphical one, as the user can use their intu-
ition and knowledge to determine trial solutions which
have physically reasonable values. The data is read in
and displayed on screen. The user may perform vari-
ous normalisation operations. JavaFit allows for nor-
malisation to a third data column, which is common
in synchrotron photoelectron spectroscopy, where the
intensity of the stimulating radiation may fall over the
length of time taken to carry out the measurement.
In addition there may be a requirement to eliminate
the inelastic scattering of electrons in the tail of the
photoelectron spectrum, often known as removal of a
Shirley type background [5]. The user then enters trial
parameters into a dialogue box, and compares the the-
oretical lineshape generated with the actual data. Once
a reasonable agreement between experiment and a pa-
rameter set is reached, then the Levenberg-Marquardt
fitting is invoked, producing a final set of parameters,
which represents a model of the experimental results.

2. Method of solution

The method of solution of a nonlinear least-squares
fit is by the Levenberg~Marquardt method [1,2]. The
calculation engine is a Java implementation of an es-
tablished C/FORTRAN fitting technique [6]. Using
an object-oriented approach, the whole of the fitting
procedure is encapsulated in a Java class, LevMarg,
with methods available for entry of data and access to
the fitting parameters and the resultant fit to the model.
The user needs to define the fitting function accord-
ing to the problem on hand. An instance of the fitting
class LevMarg can then be declared within the main
program.

In the example code given, the data is fitted to a

A.W. Robinson/Computer Physics Communications 112 (1998) 183-190 185

Normalised Counts

97 98 99 100 101 102
Binding energy [eV]

Fig. 1. Experimental data for the Silicon 2p photoemission feature
(dots) and the trial function before fitting (solid lines) using the
parameters in Table 1, column 2. The three component peaks are
plotted as dotted lines.

lineshape that consists of two Voigt profiles. This sim-
ulates the photoelectron spectrum obtained from core
level electron orbitals, which are split into 2 compo-
nents by spin-orbit interactions. In the model, the line-
shape is determined by the lifetime of the core-hole
produced by the ejection of the photoelectron, which
has a Lorentzian shape, and a Gaussian component
which is due to instrumental broadening from the en-
ergy resolution of the stimulating radiation and the
energy resolution of the kinetic energy analyser em-
ployed. For core levels, the lifetime broadening can
be assumed to be equal for both components, as can
the instrumental resolution. Generally, there is a fixed
intensity ratio (the Branching Ratio) between the two
components. Thus the parameters which need to be
fitted are the Lorentzian Full Width at Half Maximum
(FWHM), the Gaussian FWHM, the intensity of the
primary peak, the branching ratio, the energy position
(on the x-axis) of the primary peak and the energy (x-
axis) offset between the primary and secondary peak.
The parameters are shown schematically in Fig. 1.

In the Levenberg-Marquardt method, it is also nec-
essary to quantify the variance in the y-values of the
experimental data. Generally, it is not possible to mea-
sure the experimental uncertainty at every point in a
spectrum, so some degree of approximation has to be
carried out. In the present case, the variance is as-
sumed to be equal at every point. As the experimental

data in this instance consists of peaks surrounded by
a flat background signal, the variance is calculated by
computing the standard deviation of the last 10% of
points in the spectrum, where the background is flat,
and the points should vary around a mean value.

3. Program structure
3.1. Components

The program components that are required to run
the JavaFit package are

JavaFit.class
LevMarg.class
ImportDialog.class
GetDoubles.class
MessageBox.class
ExTextField.class
SOSParameters.class

These are the compiled versions of the source code
files

JavaFitjava
LevMarq.java
ImportDialog.java
GetDoubles.java
MessageBox.java
ExTextField java
SOSParameters.java

Note that because of the platform independent na-
ture of Java, the class files as supplied should be able
to run on any platform for which there is a Java run-
time module (version 1.0.2) installed. In practice, the
user will almost certainly want to modify some of the
source code in order to modify the fitting function for
the physical situation that is being modelled. Running
JavaFit is a matter of invoking the Java runtime mod-
ule on the JavaFit class.

3.2. JavaFit class

The main component of the JavaFit program is the
JavaFit class. This class is derived from the Frame
class and is the general driver routine, which contains
data arrays, the Paint routine for screen display, and
class declarations and instance creation for the Lev-

186 A.W. Robinson/Computer Physics Communications 112 (1998) 183190

Marq fitting class. Data holding arrays are provided
in this class because it is quite typical to perform nor-
malisation and background subtraction on data before
fitting. As the Levenberg-Marquardt fitting class was
devised as a general purpose and self-contained fitting
engine, it does not include methods to carry out these
specialised normalisations. This makes the LevMarg
class more compact and portable, but has the draw-
back that prefitting normalisation requires the data to
be stored in the main program, pre-normalised, and
then loaded into the LevMarg data storage arrays so
that fitting can be carried out. The size of the data stor-
age arrays is set by the ARRAYSIZE integer variable,
and is set to 200 in the current JavaFit implementation.

The display of JavaFit comprised of two compo-
nents, the main frame, which displays the loaded data
and any modelled fit to that data, and a dialogue box,
which contains the values of the parameters used in
the fitting model. The user enters values into the dia-
logue box, and presses the update button to replot the
screen display with the new model. The dialogue box
is created from a separate class.

The Paint method is used to display both the entered
data and the fit derived by applying the current model
parameter values to the model function. In the present
model, we allow for the possibility of several over-
lapping lineshapes, and the paint routine will plot up
the total fit together with the individual components.
This is a complication that the user will not necessar-
ily need, and appropriate comments are made in the
source code regarding which portions of Paint are cus-
tomised for the multi-component display. There are
also several methods called from Paint that plot the
data and graph axes.

The ReadFile method is designed to parse complex
ASCII data in columns, including floating point values
using the exponential format. It is also designed to
deal with the different line termination characters used
by MS-DOS, UNIX and MacOS operating systems.
It also allows for there to be ASCII text comments in
headers before the numerical data, and footers, after
the numerical data.

The handleEvent method deals with all mouse input,
window and menu commands. Most of the program
functionality is called from this method.

The SingleFuncs method is a variant of the funcs
method in the LevMaryg class. It is present because in
the fitting model supplied, it is possible to have up to

three doublet Voigt profiles present. It is highly desir-
able to be able to plot out the individual components
on the screen in order to see the relative sizes, and also
to be able to numerically integrate the area under each
component to find the relative areas. The SingleFuncs
method is derived from the funcs method, but is con-
siderably simplified, as it requires only one component
to be calculated, and does not require the calculation
of the partial derivatives of the fitted function.

The CalculateSigma method is used to determine
the value of the variance for each experimental data
point. The approximation used is to assume that the
last 10% of data points in the experimental spectrum
lie on a flat background. The variance can be calcu-
lated from these points. The same value for the vari-
ance is then assigned to each experimental data point
using the SetSigma method in the LevMarg class.

There are a number of graphical methods for plot-
ting the data on screen, and plotting x and y-axes.
These are

void DrawXAxis(Graphics g)

void DrawXAxis(Graphics g, double interval)

void DrawYAxis(Graphics g)

void DrawYAxis(Graphics g, double interval)

int GetYCoordinate (double dValue)

int GetXCoordinate(double dValue)

void SetScreenSize(int x, int y)

void SetPlottingLimits(double x_min,

double x.max, double y_min, double y_max)

double FindTicks(double AxisMin, double AxisMax)

Once the data is loaded into the data arrays defined
in JavaFit, it may be necessary to manipulate it to
normalise for the intensity of the stimulating radiation,
and to remove the effects of inelastic scattering from
the background. These functions are implemented in
the methods

void Normalise()
void SubtractShirleyBackground()

After data has been normalised it may then be
loaded into the Levenberg-Marquardt fitting class
LevMarg, to carry out the fitting. After the fitting
has been carried out, the data may be saved into two
ASCII files. The first file is a four-column file con-
taining the experimental x, y and sigma data, and the
calculated fit in the fourth column, respectively. The
second file, with the identifier .par appended to the

A.W. Robinson/Computer Physics Communications 112 (1998) 183-190 187

name of the first file, contains text stating the values
of each of the parameters used in the calculated fit,
and the integrated areas under each component in a
multi-component fit. The methods used are

void WriteFile (String filename)
void WriteParameterFile (String filename)

3.3. LevMarq class

LevMarq is a generalised class that totally encap-
sulates the Levenberg-Marquardt fitting procedure. It
includes data storage arrays and methods for storage
and retrieval of experimental and calculated data, and
the parameters used in the model function.

The user has to define the functional form of the
fitting profile in the method funcs, which is generally
an equation of form y = f(a;...a,, x), where a; to
ay are the parameters which are to be varied in the fit-
ting procedure. In order to keep compatibility between
functions developed for programs using the C or FOR-
TRAN routines from which it is derived [6], the funcs
routine uses the same variable name conventions. The
values of the fitting parameters 1 to n are held in an
array a and the parameter which determines whether
it is allowed to float during the fit are held in array ia.
The routine must also calculate the partial derivative
of the function with respect to the parameters. The
complications of the original C and FORTRAN rou-
tines, which need many arguments to initialise arrays
etc., are avoided in the Java implementation, as all of
these data storage structures are encapsulated within
the LevMarg structure. The default implementation of
funcs is a function that can model multiple doublet
Voigt profiles [3].

To change the maximum number of datapoints that
can be stored, the integer value MAXPOINTS may be
set to an appropriate value. In the current implemen-
tation this set to 200. Similarly, the maximum number
of adjustable parameters which may be modelled is
set using the integer variable MAXPARAMS. This is
set to 20 in the program as distributed.

The general procedure for carrying out the fitting is
firstly to load the data set into the instance of LevMarg
using the data input methods:

void SetX(int n, double xin)
sets the x data point x[n] to the value xin

void SetY (int n, double yin)

sets the y data point y[n] to the value yin

void SetSigma(int n, double sigin)
sets the variance sigma[n] to sigin

void SetNumData(int n)
sets the number of data points

Loading the values of the parameters into the fitting
function, and determining whether these values are al-
lowed to vary (floating) or are fixed during the fitting
process, is done with the method

void SetParam(int n, double £, int nf)
puts value f into parameter n and sets the float-
ing/fixed attribute to nf (0 = fixed, 1 = floating).

The initial stage of the fitting procedure is normally
done by an iterative process by guessing a trial so-
lution and adjusting the parameters to physically rea-
sonable values that give a reasonable level of agree-
ment with the experimental data. Hence the JavaFit
program displays the data that is being fitted, and the
fit that corresponds to the parameters entered by the
SetParam methods. The user can then adjust the pa-
rameters until a reasonable correspondence between
the experimental data and the trial set of parameters is
obtained. The JavaFit display method Paint calls the
Levmarq method FitWithParams. This method takes
the current values of the parameters and applies them
to the model function funcs.

Once the user has determined that there is a satis-
factory agreement between the entered parameters and
the data, the fitting method is then called:

double FitData()

This method then performs the Levenberg-Marquardt
fitting, starting with the entered parameters. At each
fitting step a value of y? is calculated between the ex-
perimental and calculated values. The fitting process
continues until the y? values of two successive iter-
ations become very similar. The default convergence
criterion is that if that the ratio of the newly calcu-
lated chisq value to the previous chisq value is greater
than 0.999, then the fitting process is halted. There are
methods to alter the convergence criterion for halting
the fitting:

void SetConverge(double f)
sets the convergence criterion for fitting

double GetConverge()
returns the current convergence criterion

188 A.W. Robinson/Computer Physics Communications 112 (1998) 183-190

Once the fit is completed, then the data may be
retrieved using the data access methods:

double GetX(int n)
returns the value of the x data at point n

double GetY (int n)
returns the value of the y data at point n

double GetFit(int n)
returns the value of the fitted data at point n

double GetSigma(int n)
returns the value of the variance at point n

int GetNumData()
returns the number of data points

double GetParam(int n)
returns the value of the nth parameter

double GetChisq()
returns the Chi Squared value from the current fit

double GetCovariance(int n)
returns (n X n)th element in the covariance matrix

double GetVariance(int n)
returns the square root of (n x n)th element in the
covariance matrix element

The last two methods are for returning the values
in the covariance matrix which is used in the L-M
fitting method. This matrix is of size (n x n), where
n is the number of floating parameters in the fitted
function. Provided that the estimate of the variance in
the experimental y-data is physically reasonable, these
covariance values may be used to calculate standard
errors on the calculated parameters [3].

3.4. ImportDialog class

Contains the code that creates the import dialogue
box. This allows the user to define the type of in-
put file. The program expects a multicolumn ASCII
format file. There may be comment lines before (the
header) or after (the footer) the actual data, depend-
ing on the idiosyncrasies of the data file format. In ad-
dition to specifying the x and y columns in which the
data is to be found, there is the possibility of reading
a third column for normalisation data. If no normal-
isation data is present, the value O should be entered
in the appropriate field in the dialogue box.

3.5. GetDoubles class

This is a routine for reading and parsing lines of
text into double precision floating values. It is a mod-
ification of a public domain software routine 2.

3.6. MessageBox class

Creates a small box, which gives information to the
user when time consuming tasks, such file i/o or fitting
are taking place.

3.7. ExTextField class

A modification of the TextField Class (contained in
the standard Java AWT library), which allows for eas-
ier conversion between strings in text fields contained
in the dialogues and double precision floating point
values.

3.8. SOSParameters class

This class encapsulates a dialogue box for entering
the parameters for the fitting routine. The captions
and numbers of fields in this class will depend on the
type of fitting function used, and the user will need
to modify the number of parameters depending on the
form of function funcs.

3.9. Platform dependent features

Despite the intention of making the JavaFit pro-
gram completely platform independent, there is one
change which needs to be made to the Macintosh ver-
sion of this program. This concerns the way in which
files are read from the local filing system. The Mac-
intosh implementation requires the addition of a */’
character between the pathname and filename of the
input file in order to read from the local disk. Thisis a
Java Development Kit (JDK) bug specifically in the
Macintosh implementation of JDK 1.0.2. The correct
code according to the JDK documentation is

2The original routine was written by T. Farnum (tfar-

num@rpa.net). The version supplied has been modified by the
author to cope more flexibly with exponential formats in ASCII
data.

A.W. Robinson/Computer Physics Communications 112 (1998) 183-190 189

infile = opendlg.getDirectory()
+ opendlg.getFile();

This must be modified in the Macintosh version using
JDK 1.0.2. to

infile = opendlg.getDirectory()
+ ¢4/ + opendlg.getFile();

There are no other platform dependent features, but
it should be noted that the performance of JavaFit on
the different platforms may vary considerably. This
could be due to the processor speed, the relative ef-
ficiency of the operating system and the efficiency of
the implementation of the java runtime executable. In
the systems tested here, the Macintosh implementa-
tion (on a Mac 7200/75 running MacOS 7.5.5) per-
forms the L-M fitting extremely rapidly, but is rather
slow on file i/o operations. The Linux version (Pen-
tium P133, running Linux 2.0.27) has fast file i/o,
but is rather slower in carrying out the actual fitting
procedure. As the difference in fitting performance is
an increase in the fitting time from around 1 second
on the Macintosh to 3 seconds on the Linux machine,
this is not a significant problem. The performance of
Java, as an interpreted language, will be inferior to
compiled languages such as C or FORTRAN. How-
ever, the actual fitting procedures take only a matter
of seconds to carry out. The time consuming tasks are
actually the interactive setting of the initial modelling
parameters before the fitting procedure starts, which
is largely determined by the user. Hence JavaFit has
sufficient performance to carry out the fitting tasks.

4. Test run

The user should select the “Import” option in the
“File” pull-down menu, and check that the character-
istics of the data file in the dialogue box are 0 header
lines, O footer lines, x data from column 1, y data from
column 2 and normalisation data from column 0. The
dialogue box may then be closed. Then selecting Open
from the File pull down menu, the file jtest.dat may
be read in. The data has already been prenormalised
and a background subtracted, so no operations are nec-
essary from the “Background” menu. The fitting pa-
rameters dialogue box is then made visible using the
“Show” option in the “Parameters” pull-down menu.
The trial fitting parameters are then entered into the

Table 1
The values of the 6 parameters needed to model the spin-orbit
double Voigt photoemission function

Parameter Value in Value after
trial solution L-M fit
before fitting

Branching ratio 2.0 2.0

Spin-orbit splitting [eV] 0.6 0.6

Lorentzian FWHM [eV] 0.1 0.123

Gaussian FWHM [eV] 0.2 0.186

Intensity of Peak 1 3200 2845.38

Position of Peak 1 [eV] 99.5 99.51

Intensity of Peak 2 3200 1903.6

Position of Peak 2 [eV] 99.7 99.66

Intensity of Peak 3 500 332.94

Position of Peak 3 [eV] 100.0 99.98

The second column contains those used to model the trial fit shown
in Fig. 1, the third column contains those obtained after the L-M
fitting procedure, shown in Fig. 2.

5000

4000 -

3000 ~

2000 ~

Normalised counts

1000 ~

O.‘

-1000 T
97 98 99 100 101 102
Binding energy [eV]
Fig. 2. Experimental data (dots) compared to the fit obtained after
the Levenberg-Marquardt fit (solid line). The values of the fitted
parameters are given in Table I, column 3. The three component

peaks are plotted as dotted lines. The solid line is the residual,
offset by —500 units in y for clarity.

dialogue and should be set to those given in column 2
of Table 1. The “floating” checkboxes of all parame-
ters should be checked in the dialogue box, except for
the branching ratio and the spin-orbit splitting values,
which should remain constant at 2.0 and 0.6, respec-
tively, throughout the fitting procedure. The validity
of these values is discussed in Ref. [4]. The number
of peaks in the dialogue box should be set to 3, as in

190 A.W. Robinson/Computer Physics Communications 112 (1998) 183-190

this case we are fitting the data to three doublet peak
profiles. Once the “Update” button in the dialogue box
is pressed, the resultant screen display, comparing ex-
periment data to the trial fit, is shown in Fig. 1.

The fitting routine may then be invoked by clicking
the “Do Fit” menu item in the “Fit” menu. Once this
is completed, JavaFit returns the calculated parame-
ters to the dialogue box and displays the resultant fit,
together with the experimental data, on screen. The
calculated values from fitting the test data are given in
column 3 of Table 1, and used to plot the final model
against the experimental data in Fig. 2. As can be seen,
the final calculated fit shows a good level of agree-
ment with the experimental data, despite starting from
the relatively poor first guess of Fig. 1.

Acknowledgements

The author is grateful to J. Wilkes for installing and
extensively testing the Linux version of the program
and providing many helpful comments. The author
also thanks C.E.J. Mitchell for a critical read-through
of the manuscript.

References

[1] K. Levenberg, Quart. Appl. Math. 2 (1944) 164.

[2] D. Marquardt, SIAM J. Appl. Math 11 (1963) 431.

[3] A.W. Robinson, P. Gardner, A.P.J. Stampfi, R. Martin, G.
Nyberg, I. Electron Spectrosc. Rel. Phenomena, in press.

[4] A.W. Robinson, P. Gardner, A.PJ. Stampfl, R. Martin, G.
Nyberg, Surf. Sci. 387 (1997) 243.

[5] D.A. Shirley, Phys. Rev. B 5 (1972) 4709.

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes in C, The Art of Scientific Computation,
2nd ed. (Cambridge Univ. Press, Cambridge, 1992), ISBN
0-521043108-5.

