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Abstract

As the energy loss of electrons in matter is described by a strongly non-Gaussian distribution, the Kalman filter is not
necessarily the optimal procedure for the fitting of electron tracks. We show that the momentum resolution can be improved
by using nonlinear methods, such as the Gaussian-sum filter and the Metropolis-Hastings algorithm. We report results of a
simple simulation experiment and comment on the respective merits of these methods. © 1998 Elsevier Science B.V.
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1. Introduction

In track reconstruction with the Kalman filter, both measurement and process noise are implicitly assumed
to be Gaussian. This assumption is justified in many cases. As far as the measurement noise is concerned,
most position detectors show an approximately Gaussian behaviour. For minimum ionizing particles the process
noise consists mainly of multiple Coulomb scattering. It is well known that the distribution of the projected
scattering angle of multiple Coulomb scattering can be adequately modeled by a Gaussian. The most important
case where the assumption of normality breaks down is the energy loss of electrons in matter, which is
dominated by bremsstrahlung above a certain energy. This requires a stochastic model with a strongly non-
Gaussian distribution [1]. In this case the Kalman filter is not necessarily the optimal filter, even if the model
is perfectly linear. It is therefore worthwhile to investigate whether nonlinear estimators yield estimates with
smaller variance.

In this note we examine two nonlinear estimators by means of a simulation experiment: the Gaussian-sum
filter [2,3] and the Metropolis-Hastings algorithm [4]. The Gaussian-sum filter is a computationally inexpensive
generalization of the Kalman filter. It requires, however, the approximation of non-Gaussian distributions by
Gaussian mixtures; hence the performance of the filter depends on the quality of the approximation. In order to
assess the performance of the Gaussian-sum filter we compare it to the Bayes estimator. We propose to compute
the Bayes estimator via the Metropolis-Hastings algorithm, which is very simple to implement although it is
not particularly efficient with respect to the computing time. Using a simplified model of the momentum
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measurement in the detector and of the process noise due to energy loss, we show that the estimation of the
inverse momentum (or of the curvature) of electron tracks can actually be improved by taking into account the
actual shape of the energy-loss distribution via a nonlinear estimator.

2. The simulation model

The model used in the simulation experiment is confined to the estimation of the inverse momentum of an
electron track in front of and behind a layer of material with a thickness equivalent to ¢ radiation lengths.
The true momenta in front of and behind the material are denoted by pg and p;, respectively. Energy loss is
simulated according to the formula p; = pg - z, where —Inz is I'-distributed. The probability density function
and the first two moments of z are given by

(_]nz)l/ln2——l
T(7/In2)

Fig. 1 shows the probability density function of z for a few values of t. Obviously the distribution of z is
confined to the interval (0, 1] and therefore has moments of all orders.

In a typical detector the estimate of the inverse momentum g = 1/p is unbiased and approximately Gaussian.
We assume that estimates go and §; are available from track segments both in front of and behind the material.
We consider these estimates as our observations. In the model they are drawn from Gaussian distributions with
mean ¢; = 1/p; and variance V; = ¢, 7,2, assuming a constant relative standard error 7; = 0(§;) /¢;.

, 0<z<1; E,=e", Vz:e_""3/'"2~e—2’.

f(z) =

3. Two nonlinear estimators

The baseline of our simulation experiment is the Kalman filter [S]. We are mainly interested in improving
the estimate of go on the front side of the material, which is closer to the interaction vertex. Therefore the filter
runs in the direction opposite to the particle. The distribution of z is replaced by a Gaussian with mean £, and
variance V;, and the system equation gg = g; - z is approximated by a linear one,

p=q+6, S=-q(l-2), Ex-g0-E), V=iV,
The Kalman filter estimate gy can be written as a weighted mean of the observations §p and 4,

Vi + Vs 0
Ww+Vi+Vs Vo+Vi+ Vs

The Gaussian-sum filter (GSF) is a generalization of the standard Kalman filter [2,3]. The distribution of
the process noise is now approximated by a mixture of Gaussians. The resulting filter is a weighted sum of
Kalman filters, the weights depending on the observations. It is therefore nonlinear. The associated smoother is
described in [3].

We have approximated the distribution of z = p;/pg by a mixture of six Gaussians, using the general purpose
minimization program MINUIT [6]. The objective function was the L,-distance between the true density
function and the mixture, plus two penalty terms forcing the sum of the mixture weights to 1 and the mean
of the mixture to the true mean. We have tabulated the mixture parameters for ¢ = 0.05,0.06,...,0.25. The
quality of the approximation has been checked by comparing the first four moments around 0. These are given
by the following expressions:

Go = go + (41 + Es)

m=E(z)=e"",
Mo = E(ZZ) ___e—Iln3/1n2 =e~1.5851
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Fig. 1. The probability density tuncuon o1 z = py;po.
IL3=E(Z3)ze—llﬂ4/]n2=e—-21’
ps = E(z%) = e~tInS/n2 _ p—2322

Table 1 shows the first four moments of the actual distribution and of the approximating Gaussian mixture, for a
few values of the thickness ¢. The first two moments match almost perfectly, while the deviation of the third and
fourth moments is not more than 2-4%. Fig. 2 gives a visual impression of the quality of the approximation.

The posterior density of the GSF estimate is only an approximation to the true posterior. A fully Bayesian
analysis can be implemented via the Metropolis—Hastings (M-H) algorithm [4], thus avoiding the cumbersome
numerical evaluation of otherwise intractable integrals. Rather than computing the posterior distribution of the
estimate, a Markov chain is constructed which has the required posterior (the “target” density) as its equilibrium
distribution. The moments of the posterior can then be computed by sampling from the equilibrium distribution.
In our case the target density is the joint density of go and ¢; conditional on the observations g and 4. By
means of Bayes’ theorem, we have

f(qo.q11Go, @1) < f(dolqo) - f(d1laq1) - fFlqolqn) .

Candidates for the Markov chain are drawn from a proposal density g(qo,q1), which we have chosen as

g(q0.q1) = f(d@i|q1) - f(qolq1).
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Table 1
Moments of true and approximating distributions

1 “ M3 4
true appr. true appr. true appr. true appr.
t=0.05 0.951 0.951 0.924 0.916 0.905 0.887 0.890 0.857
t=0.10 0.905 0.904 0.853 0.849 0.819 0.808 0.793 0.765
t=0.15 0.861 0.860 0.788 0.787 0.741 0.737 0.706 0.684
t=0.20 0.819 0.819 0.728 0.729 0.670 0.671 0.629 0.609
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Fig. 2. The true probability density function of z (shaded) and the approximating Gaussian mixture (line).

If the most recent element of the Markov chain is denoted by (go,g;)™, the candidate ( go,q1)” is accepted
as (go, q1)™™1 with the following probability:

. { wl(go,q1)*] )
= — 1),
@=mn (W[(%,(Il)(”‘)]

where w is defined by

f(q()’ qi | ‘?0, él)

w(do.q1) = 2(q0.q1)

In our case, we have

w(go, q1) o< expl—(do — o)/ (2Vo) ] .

This leads to a simple expression for the acceptance probability and to reasonable acceptance rates. Also w is
bounded, so that the entire support of the target density can be explored. Note that if the candidate (9.q1)*
is rejected, we set (go, q1) ™" = (g0, q1)"™.
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Table 2

Efficiency of M-H and GSF relative to the Kalman filter

Metropolis-Hastings Gaussian-sum filter

r= 0.05 0.10 0.15 0.20 t= 0.05 0.10 0.15 0.20
p=02 1.98 1.69 1.47 1.37 p=02 1.98 1.68 1.47 1.37
p=04 1.69 1.49 1.36 1.27 p=04 1.69 1.48 1.38 1.27
p=06 1.33 1.36 1.25 1.24 p=056 1.35 1.36 1.26 1.24
p=0.8 1.18 1.22 1.20 1.18 p=08 1.22 1.27 1.22 I.18
p=10 112 1.16 1.14 1.10 p=10 1.14 1.18 1.15 .11

Sampling from the proposal density g can be realized by first drawing ¢ from a Gaussian with mean §;
and variance Vi, and then multiplying with z, where —Inz is drawn from a T-distribution with parameter
¢ =t/ In2. Sampling from the chain starts only after it has passed a “burn-in” phase and can be supposed to be
in the equilibrium. We have worked with a burn-in phase of length 1000 and a sampling phase of length 5000.
In particular, the mean value of the sample is the M-H estimate of (qo,q1). As the Markov chain is not an
independent random sample from the distribution of (go, q1), the computation of higher moments, in particular
of the variance of the estimate, is not entirely straightforward. This is clearly a drawback of this approach.
Another one is the relatively long computing time required to generate a Markov chain of sufficient length.

4. Results of the simulation experiment

It turns out that the improvement of the momentum resolution with respect to the Kalman filter depends
critically on two model parameters. The first one is the number ¢ of radiation lengths which are traversed by
the electron; the second one is the ratio of the relative standard errors p = 71 /7o of the curvature measurements
behind and in front of the material. In order to study the influence of these parameters we have run a batch
of 5000 events for various combinations of ¢ and p. The quality of the estimate gy can be characterized by its
mean squared deviation (MSD) from the true value go. Since our baseline is the Kalman filter we measure the
performance of the estimator by its relative efficiency 7, which is the MSD of the Kalman filter divided by the
MSD of the estimator.

The results are summarized in Table 2 which shows % as a function of ¢ and p, for both the GSF and the
M-H algorithm. We observe that the results are almost identical. It follows that the GSF operates at the Bayes
limit, which is gratifying even though somewhat surprising in view of the various approximations which are
used in setting up the mixture model of the process noise. A closer inspection of the results, however, reveals
that the GSF estimator has a small bias which is not shown by the M-H estimator. There is an appreciable
gain in efficiency when p is small, especially for relatively thin layers, in which case the distribution of z is
much more skew than for thicker layers. In addition, Fig. 3 shows the frequency distribution of the residuals
Jo — qo of the estimated inverse momentum with respect to the true value, for both the GSF and the Kalman
filter. It is clear that the GSF gives estimates which are nearly always closer to the true value; however, their
distribution is obviously less similar to a true Gaussian than the linear estimates of the Kalman filter.

5. Discussion and outlook
We have shown that at least in our simple model the momentum resolution of electrons can be improved

by using a nonlinear estimator. The computational load of the GSF is only slightly larger than the one of the
Kalman filter; the M-H algorithm, however, is much more expensive in terms of computing time. In addition,
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Fig. 3. Frequency distributions of the residuals of the estimates inverse momentum for the GSF (shaded) and the KF (line).
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the variance of the estimate is obtained very easily from the GSF; it is simply the variance of the posterior
mixture and can be computed analytically from the first two moments of the components. If the posterior

mixture is written as

f(qo) = Zwi(D(QOZqus a?),

i=1

the estimate and its variance are given by

n n n
q(,:Zw,ﬁou 02=Zwi0,-2+zwi(670i2—£702)~
i=1 i=1 i=1

In the case of the M-H algorithm, the variance has to be computed from the Markov chain. Since the Markov
chain is not an independent random sample, autocorrelations of higher orders have to be taken into account.
Given the fact that the GSF operates virtually at the Bayes limit we find the arguments in favour of the GSF
overwhelming. We therefore intend to use it in further studies of electron reconstruction. The next step is the
extension of the simple model to a full five-dimensional state space model of the track and to a realistic model
of the detector and of the process noise, including multiple scattering and correlations of ¢ = 1/p with the
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other track parameters. If the conclusions drawn here are validated, the method could be put to its final test on
real data.
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