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Abstract

An algorithm for track recognition, based on a combination of the robust track fit and the deformable template method, is
proposed for data detected by a system of drift tubes. Dependencies of the algorithm efficiency and the radius of recognized
tracks on the measurement errors are explored with simulated events. (©) 1998 Elsevier Science B.V.

1. Introduction

A conventional track recognition problem can be
considered as an exhaustive sorting of all data points
recorded by a track chamber into a “sufficient” num-
ber of subsets (irack candidates). Each subset must
satisfy conditions of “sufficient” smoothness of align-
ment along a straight line or a higher-order curve cor-
responding to the absence or presence of the magnetic
field. The notion “sufficient” depends on statistical ef-
ficiency requirements of the given experiment to both
the track reconstruction methods and the statistical cri-
teria applied.

For instance, the smoothness of the data point align-
ment for a track candidate can be fulfilled by fitting a
second order curve to each of 2D projections of these
points applying then the y?-criterion. The efficiency of
the track reconstruction algorithm depends, basically,
on the “reasonability” of the clustering method ap-
plied to group data points into track candidates. It de-
termines both the highest probability of the real track
to be found and the lowest chance to include a “ghost”
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track to track-candidates. Besides, such a reasonabil-
ity has to guarantee the maximum possible reduction
of the search trials made by the used method over all
points in order to minimize the computer time con-
sumption. As examples of such reasonable algorithms,
one can point out well-known methods like variable
slope histogramming or track following (stringing)
methods [1-3], as well as relatively new approaches
like Hopfield neural networks [4,5].

Drift tubes are one of the detector systems widely
used in modern high energy physics experiments ([ 6-
81). Below we use the ATLAS Monitored Drift Tube
(MDT) setup [6] as an example. Each time when a
passing particle track hits a tube, it registers two data:
its own center coordinates and the drift radius, i.e. the
drift distance between the particle tracks and the an-
ode wire placed in the center of this tube. Thus, a track
passing the MDT provides a set of anode wire coor-
dinates and corresponding drift radii. Unfortunately,
some of these data can be lost due to the tube ineffi-
ciency. In addition, a number of noise coordinates is
also recorded. However, the main problem which hin-
ders applications of the above-mentioned conventional
track recognition methods, is the left-right ambiguity
of drift radii. There is no information on which side of
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the anode wire the track passed. The anode wire coor-
dinates themselves are very rough indicators of parti-
cle locations. So if one would even recognize a subset
of these tubes belonging to a concrete track and would
then approximate it by a second-order curve (circle
or parabola), the resulting parameter accuracy would
not be satisfactory.

In this report, a combined algorithm for track recog-
nition in a uniform magnetic field is proposed for the
muon spectrometer drift tube design corresponding
to the MDT system of the ATLAS experiment. As it
follows from the ATLLAS proposals [6], the ATLAS
muon spectrometer is divided into 8 sectors (called
ROI - Regions of Interest ). Those sectors are designed
in such a way that despite the extremely high multi-
plicity of ATLAS events, the mean number of muon
tracks in each ROI should not exceed 1-2 per event
(see the table on page 140 of [6]). This important
consideration conditioned our choice of methods to
be sufficiently accurate and efficient for off-line MDT
data processing.

The problem formulation is reduced to the (x,y)
plane perpendicular to the magnetic field and anodes
of drift tubes where track projections can be consid-
ered as arcs of a circle. Our algorithm combines effec-
tively a robust track fit [9] and our modification of the
deformable template method [10,11]. Both methods
need initial conditions for templates. The ATLAS de-
sign is supposed to be able to provide such initial con-
ditions from the RPC (Resistive Plate Chambers [6])
trigger system. However, we had no information yet
about RPC data, so for more generality we used a
Hough transform meodification to obtain the number
of circle arc templates and rough estimations of their
parameters on the very first stage of MDT data pro-
cessing.

The paper is organized as follows: in Section 2 we
formulate the problem. The next section describes a
modified Hough transform. Sections 4 and 5 contain
brief descriptions of the robust fitting and deformable
template algorithms. Details of the hybrid algorithm
are given in Section 6. Results on simulated data are
presented in Section 7. Finally, in Section 8 the reader
finds our conclusions.

Fig. 1. Example of a typical eveat.

2. Formulation of the problem

The MDT system for one of the ROI of the ATLAS
muon spectrometer consists of the modules formed by
several layers of tubes arranged in honeycomb order
(see Fig. 1). In the middie of every tube there is an
anode wire with known XY-coordinates. All tracks of
an event passing these layers produce N signals, i.e.
set M = {x;,yi;ri, i =1, N}, where (x;, ;) are coor-
dinates of the hit tube centers, r; are drift radii. Let us
suppose, first, that the recognition problem is solved,
i.e. the subset S of triplets (x;, y;; r;) produced by only
one of the tracks and, probably, also by some noise
tubes was extracted from the set M. For the sake of
simplicity, let us keep for S the same notation as for
M, le S ={x.y;r i = rﬁ} Geometrically the
set § can be considered as a set of circles on the plain
with centers (x;, y;) and radii r;.

Thus, the mathematical formulation of the problem
is to draw the track line as a second-order curve (circle
or parabola) tangential to the maximum number of
these small circles (SC) from S.

To clarify our approach, we introduce a new con-
cept of the measure of tangency of an arbitrary curve
y = f(x) to one of SCs (x;,y;;r;) as the difference
D;i{ f) between two values: the SC radius »; and the
distance from its center to the curve ¥y = f(x). In
the obvious case, when a curve and SC are tangential,
their tangency measure is equal to zero: D;(f) = 0.
Thus using the measure of tangency concept for an ar-
bitrary track model y = f(x), we reduce our problem
to minimizing the functional

N
L= DX[). (1)
=1

For instance, considering a parabola y = Ax? +
Bx-+C as the track model, we should find the parabola
(A, B,C) that minimizes the sum of squares of its
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tangency measures D; (A, B, C) for all SCs from the
set .

The straightforward determination of a parabola’s
tangency measure as

Di(A.B,C) = {mi!}{\/(x.' — 0+ (yi— w2},
: (2)

where (x,y) € Ax? + Bx + C, leads to a nonlinear
problem. However, it can be avoided by a linearization
of (2). Replacing the parabola by its tangent in the
vicinity of (x;, y;;7;), one obtains

A(x?+R:, /) + Bx;+ C — y;
V2Axi +B)2 + 1 '

where Ry, is the drift tube radius.

The situation looks easier when the track model is
a circle (a, b, R). The measure of tangency of two
circles in a plane is the minimum distance between
crossing points of these circles with the straight line
linking their centers. It is obvious again, when two
circles are tangent, their tangency measure is equal to
Zero.

Now we can take into account the left-right ambi-
guity problem. Since the variable

D,(A,B.C) ~

Di(a,b;Ry =/ (xi —a@)* + (yi = b)* = R (3)

can have both positive and negative values, summands
in (1) must be twofold,

d” = (Di(a,b;R) —r))?, if Dia,b;R) >0,
d' = (Di(a,b;R) + r)?,  otherwise.

4)

Thus our problem in the case of the circular track
model reduces to minimizing (1) with such dual sum-
mands.

In the known literature about circle fitting [ 12-15],
we distinguish two most promising approaches:

- Robust fit derived from the maximum likeli-
hood method [13] (see also programming details
in [16])

— Elastic Arm approach similar to [17,18].

Our idea is to combine both methods in one hy-
brid algorithm in order to achieve the maximum effi-
ciency and speed of the drift tube track recognition. In
this hybrid algorithm the robust method, as the faster
one, is used first, unless its results are satisfactory

( x* goodness-of-fit criterium is less than a prescribed
cutoff). Otherwise parameters obtained by the robust
method are used as initial values for elastic arm algo-
rithm, which is more precise, on the final stage.

To ensure a fast convergence towards a high quality
solution avoiding the local minima of (1), either ro-
bust or elastic arm algorithms must be initialized with
approximate values for the positions of the centers and
the radii of the circles. Due to reasons pointed out
above at the end of the introduction, we modify the
Hough transform method [ 19] which, following [20],
we call the method of sequential histogramming by
parameters (SHPM).

3. Sequential histogramming method

Let us first suppose Q = {X.,¥, i = 1, N} to be
a set of coordinates X;, ¥; measured in the process of
recording an event with several tracks. So their point
coordinates as well as the noise coordinates belong to
Q). A circle arc is supposed to be a good approximation
for any track.

Let us consider all triplets of points of the € set. If
these three points do not belong to a straight line, one
can draw a circle through them. Thus a set of such
circle parameters is obtained: W = {a;,b;;R;, j =
1,C3}. One could imagine a 3D histogram con-
structed on that W set as a hilly surface, where hills
should most likely correspond to tracks. This idea
together with so-called sequential histogramming
approach [20] gives us the following algorithm for
finding the initial track parameters:

(1) Circles are drawn through all admissible point
triplets. Then the first parameter a; of each circle
is histogrammed.

(2) The value a,, is obtained that corresponds to the
maximum of this histogram.

(3) With a,, fixed, circles are drawn through all ad-
missible pairs of points from (1. Then the second
coordinate b; of each circle is histogrammed.

(4) The value b, is obtained corresponding to the
maximum of this second histogram.

(5) With the coordinates of the center (a,,Dy)
fixed, all admissible circles of radii R; are
drawn through points of the set 3. Then the R;
are histogrammed.
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(6) The value R,, is obtained corresponding to the
maximum of this third histogram.

The admissibility in steps (1), (3), (5) above means

testing the corresponding values by easy cutoff criteria

(for instance, each R; is tested whether it is inside a

prescribed minimal and maximal radius: Ruin, Rmax ) -

Then the obtained parameters (a, b,,; R,,) are sub-
jected to more sophisticated tests. If the results are
positive, i.e. parameters (., b,; Ry,) are accepted as
likely track parameters, all measurements correspond-
ing to it are eliminated from the set {} and the whole
procedure is repeated starting from step (1).

If the circle (a,,. b,y; R,) is rejected by testing, then
the maximum R,, of the third R;-histogram is elimi-
nated and the procedure is repeated starting from step
(6). If there are no more peaks in the R;-histogram,
then the peak by, of the second histogram is eliminated
and the procedure is repeated starting from step (4)
and so on, unless the procedure would find a true circle
or all peaks in the second histogram would be elimi-
nated. In this case the peak a,, of the first histogram is
eliminated and the procedure is repeated starting from
step (2).

Thus, the method of sequential histogramming by
parameters (SHPM) provides a way to “capture” the
area where tracks are likely to be situated and provides
us with initial parameters of those tracks. In order to
apply SHPM, the results of measurements should be-
long to the Q set, i.e., a set of track point coordinates.
However, we deal with the set M of small circles (SC)
{xi,yi;r;, i =1, N}, so we have to determine on each
of these SCs a point associated with some of the tracks.
Supposing that the vertex area from which all tracks
of the given event emanate is known, one can roughly
determine such a point as a tangent point of the tan-
gent line drawn to each SC (x;, y;; r;) from the center
of the vertex area. However, there are two tangents to
each SC and, therefore, we have two possible track
points, i.e. left-and-right (or top-and-down) uncer-
tainty. It would not restrain us in applying the SHPM,
but it should be kept in mind that the left-and-right
uncertainty factor doubles the element number of the
set @ = {X;,Y, i=1,2N} comparing with the num-
ber of elements in the set M = {x;, y;5ri, i=1,N} of
the conventional SHPM (see, for example [11]). If
the vertex area is unknown, we take two possible track
points, such as (x;, ¥; +r;), (x;, y;i — ri). To decrease
the histogramming search domain of the (1 set, it is

necessary to use the maximum of a priori information
on the tracks in the event.

The SHPM-description given above siresses the im-
portance of the method used to extract a histogram
peak from a background. Our experience shows that
it is useless to look for an universal peak-background
threshold common for all events of a given experi-
mental run, since this threshold strongly depends on
the informative load of the given event. Aiming for
statistical efficiency of our method we elaborated the
following heuristic formula for the peak-background
threshold of a particular event:

Noound = C * Huax + Hiean » (5)

where Hnax is the maximum value of the histogram,
Hiean is its mean value, C is a constant, which value
is to be tuned to the given experiment data.

Choosing the bin size, one should find a reasonable
compromise between either a too small or too big bin
size. The first case could lead to the histogram peak
loss, i.e. to losing one of the tracks, while a too big
bin size decreases the accuracy.

4. Robust fitting

The direct application of the conventional least
square method (LLSM) for our problem conflicts with
the fundamental LSM assumptions. Firstly, the de-
viations (3) in LSM function (1) are not normally
distributed. Furthermore, we do not fit a circle to a set
of measured points, as in the conventional LSM, but
again our circular track is to be fitted to the SC set
S={x,yisr, i= T, N}. In addition, the influence of
point-outliers on parameter estimations is excessive
due to squaring of each deviation’s value in the LSM
function (1). This makes the whole problem ill-posed.

However, the above-mentioned concept of the tan-
gency measure for two circles allows us, as in the
previous section, to replace each SC by two points of
the possible SC-tangency with the track. Those two
points can be calculated as the crossing points of SC
with the straight line between the SC-center and the
center of the circle arc serving as the track model.
As stated above, the set S includes triplets (x;, yi; r;)
produced by one of tracks and also by some noise
tubes. Thus we have a kind of a contaminated sample
and, therefore, can use the robust approach invented
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in [9] by analogy to P. Huber’s M-estimates [21].
Due to the LSM violations, the maximum likelihood
approach should be applied. It was done in [9] under
the assumption that the contaminating points are uni-
formly distributed. By differentiating the logarithmic
likelihood function for measured point deviations (3),
the search of its maximum was reduced to the iterative
solution of a normal equation system for unknown pa-
rameters with the special optimal weights recalculated
on each iteration step as functions of those deviations.

This approach was then applied to the circle fit-
ting problem in [16,15], where the optimal weights
were approximated by the 4th order polynomial that,
in fact, coincides with Tukey’s famous bi-square for-
mula [22],

[(1 — (@5 [ (er v &HD Y2
k if |V < erxa®D, (6)

otherwise,

where k is the iteration number, d;~! is the residual of
the deviations obtained at the previous iteration, and
™% is the estimate of variance evaluated as

("2 =S "wiP (a2 > wi.

Since the SHPM-procedure provides us with initial
values of parameters, we use them to calculate w?.
The constant ¢r is an external parameter of the robust
fitting algorithm. The latter was taken from [ 13] with
the robust modifications described in detail in [16].
For our calculations we vary the constant ¢ and obtain
the best results for ¢ ~ 3.

5. Elastic arm (deformable template) approach

Elastic arm methods, known also as deformable
template methods (DTM), represent an effective as-
sociation between neuronic decision and parameter fit-
ting. In other neural network or classical pattern recog-
nition approaches, one has then to provide the algo-
rithm with some fitting procedure. So it is advanta-
geous to have an algorithm that does both the assigning
and the fitting simultaneously. The elastic arms strat-
egy is to match templates, i.e. simple parameterized
models (which in our case are circle arcs) to observed
objects (small circles from S). An unknown subset

of these objects corresponds to noise and should be
unmatched.

Having objects different from just measured points
as it was in known DTM applications [10,11], we
have to modify the definition of the binary decision
unit (neuron). Similar to [17,18] we define it as a
two-dimensional vector §; = (s, s; ) with admissible
values (1,0),(0,1),(0,0). Denoting the measure-
ment error of the drift radius by A we introduce the
energy function of our neural system as the following
functional L:

N
L(a,b,R,s7,s7) =Y {d] sy +dsy

i=1
+A((s] +s7) — D2}, (7)

Circle parameters (a, b; R) that correspond to a track
in question would define a point in the parameter
space, where this functional L has to reach its global
minimum. Since each SC can belong only to one of
the tracks or to no track at all, L must be minimized
with the following conditions: s; = (0,0) means ith
tube for the given track is the noise tube and the com-
bination s; = (1, 1) is forbidden, i.e.

st+sT <1, (8)

The initial values of the track parameters can be ob-
tained from the previous stage of robust fitting (or if
you want to apply DTM directly, by the SHPM). Then
choosing an area where this track could lie, we pro-
ceed to look for a global minimum of the functional
L(a.b,R,s;, s,-*) (7). One of the main problems here
is how to avoid local minima of L(a,b,R,s; ,s)
provoked by the stepwise character of the vector s; =
(s}, s7) behavior. One of the known ways to avoid
such an obstacle is the standard mean field theory
(MFT) approach leading to the simulated annealing
method [23]. Our system is considered as a thermo-
stat with the current temperature 7 [10]. Then as it
was shown in [17], parameters s/, 5s;” of the func-
tional L(a,b,R,s;,s}) with fixed (a,b; R) can be
calculated by the following formulae, where the vec-
tor s; with its stepwise behavior is replaced, in fact,
onto sigmoidal Potts factors:

1
A s 9
5 1 +e(d['—A)/T+ e(df—dl*)/T ®)
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1
sto= — —. (10)
| 4 el =T 4 (i —d )T

There are many parameters that must be properly set
up, since neural networks are very sensitive to them.
One of them is the temperature. So we try to keep a
balance between the total DTM speed and the needed
number of temperature steps in the simulated anneal-
ing scheme. Thus the L global minimum is calculated
according to the following:

(1) Three temperature values are taken: high, mid-
dle and a temperature in the vicinity of zero,
as well as three noise levels corresponding to
them {17,10].

(2) According to the simulated annealing scheme,
we start from high temperature. With initial cir-
cle values (ag, bo; Ry) parameters s; s, are
calculated by formulae (9), (10).

(3) For the (s;,s; ) obtained, new circle parame-
ters (a,b; R) are calculated by modification of
the standard gradient descent method. This mod-
ification consists of the individual updating of
the L parameters and holding a condition

L{ag, by, Ri) < L{axs1,bisr, Riy1) (11)

(4) The stopping rule is as follows: either

[L{ak, b, Ri) — L(ais1, b1, R} | < €
(12)

holds or the iteration number exceeds a pre-
scribed number k = const.

(5) If the conditions of step (4) are not sat-
isfied, then with the new circle parameters
(ar1sbra1> Ris1), the next values of s/, s
are again calculated by (9), (10), and we go to
step (3).

(6) After the process converges, the temperature is
changed (the system is cooled). The values of
(a, b, R) attained with the previous temperature
are taken as starting values, and we go to step
(2) again.

(7) With each temperature value, after completing
step (5) the condition

L < Loy (13)

is tested. If it fits, our scheme is completed and
the algorithm proceeds the next stage of cor-
recting the obtained track parameters (a, b, R).

Otherwise, if at a temperature in the vicinity of
zero we obtain

L> Loy, (14)

the track finding scheme failed.

6. Procedure of the track parameter correction

The robust and deformable template methods pro-
vide us with the track parameters (a, b; R). However,
these parameters, even if they satisfy (13), could be
far from the global minimum of L. Therefore, we have
to elaborate an extra step for a possible track param-
eter correction. The idea is to improve the procedure
described in Section 3 for converting the measured
data from the set M format to the Q set. Determina-
tion of two points on each small circle of the set M
was done too roughly and produced a left-and-right
(or top-and-down ) uncertainty. Now having the track-
candidate parameters (a, b; R) and the concrete val-
ues of vectors s, = (sl.*, §7 ), or w;, we can make this
procedure more accurate. On each SC of the set § =
{xi,yisri, i = T, N} the point can now be found that is
nearest to the track-candidate with respect to values
of s; or w;. Then all these found points are approxi-
mated by a circle, and the y* value is calculated as
the goodness-of-fit criterion.

If x> < x2,. the approximating parameters
(a, b; R) are accepted as the likeliest. Otherwise, the
track-candidate is rejected.

7. Results and concluding remarks

The proposed track-finding algorithm of the tracks
detected by the MDT system in a magnetic field was
tested on different series of simulated events. The
MDT model, as it shown in Fig. 1, consists of 6 super-
layers formed by three single layers arranged in hon-
eycomb order. The distance between the first layer and
the last one is 1040 mm. Events were generated for
the most extreme situation, when two circular tracks
always crossed each other under the narrow angle and
noise signal is produced by one of ten tubes in each
layer. The radii of simulated tracks were kept in the
range of 1-3 m with the same sign of the curvature.
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Fig. 2. Distribution of the error of the circle parameters for deformable templates only. Measurement error A = 0.2 mm.

On Fig. | you can see the typical example of the tested
events.
The sample of different groups of ~ 500 simulated
events was tested by two track finding algorithms:
(i) deformable template method (DTM) only;
(ii) the hybrid method combined both: robust and
deformable template methods
Even in such heavy conditions the efficiency of the
correctly recognized events is in the range of 94-96%
for the first (DTM) algorithm. For the second hybrid
algorithm it is slightly higher: 96-98% (for the well
separated tracks it goes up to 99%).
Figs. 2 and 3 show the error distributions for the
circle parameters (a, b, R) for the first and the second
algorithms correspondingly, i.e.

|Gfind — Amodel| » |Bind — Bmodel| »

|Rﬁnd - Rmodell

Reng — R
| Rfing model| » R

The accuracy of R, which is proportional to the parti-
cle momentum, looks quite good. The notable differ-
ence in accuracy of a and b was expected due to the
relatively small angle size of the measured circle arc.

Thus, comparing results of both algorithms we
conclude that, although the hybrid method is slightly
less accurate than DTM (less than 1%), its faster
robust stage? gives satisfactory results in ~ 90% of
all events, when the process is finished. So we gain
in speed with a prescribed level of accuracy.

It should be pointed out that the main time waster
of the whole program is the SHPM realization of the
Hough transform. Due to the effect of point doubling
for each SCs, the initial stage of SHPM search wastes
more than 95% of the total calculation time. It is clear
that for the mass processing of future real ATLAS
data it will be needed either to use the RPC data for

3See | 13] where the robust algorithm timing is indicated.
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Fig. 3. Distribution of the error of the circle parameters for the hybrid method. Measurement error A = 0.2 mm.

providing the initial parameter values or to implement
the SHPM algorithm by hardware.

Fig. 4 shows the result of exploring how the radius
of the found tracks depends on the measurement error
of the drift radius. For the different values of the mea-
surement error a mean value of the error | Rfng — Rmodel|
was estimated. This is shown by a continuous line
in Fig. 4. The dotted line shows the maximum value
{Rend — Rmodel| tor the same events. The range of the
measurement error was, in fact, prolonged to 1 mm,
but since it leads to a sharp decrease of the recognition
efficiency (below 90%) those results are not included
in Fig. 4.

In conclusion, we can say that the proposed hy-
brid algorithm achieved its main aims in the process-
ing of MDT simulated events in accuracy, efficiency
and speed. The obtained results are accepted as quite
satisfactory for the present stages of both experiment
ATLAS and EVA/E850 [18,24,25].
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Fig. 4. Dependence of the drift radius error of the recognized
tracks upon the measurement error. X, ¥Y-axes in mm.
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