NH,
§-, . Computer Physics
y Communications

ELSEVIER

Computer Physics Communications [02 (1997) 252-268

I-NoLLS: a program for interactive nonlinear least-squares fitting
of the parameters of physical models

Mark M. Law !, Jeremy M. Hutson

Department of Chemistry, University of Durham,
South Road, Durham DHI 3LE, UK

Received 31 December 1996

Abstract

The I-NoLLS program is a package for carrying out interactive nonlinear least-squares fits to determine the parameters
of physical or mathematical models from experimental or other data, under circumstances where automated least-squares
procedures are excessively computationally expensive and the user needs interactive control to apply physical insight to
the fitting process. The program was developed to facilitate the fitting of molecular potential energy surfaces (PES)
to spectroscopic and scattering data, but is also applicable to a variety of other optimization problems. A range of
different algorithms adapted to highly nonlinear least-squares problems may be selected. The interactive nature of the code
permits rapid and flexible control over the progress of the fit. I-NoLLS is written in a modular way that allows the easy
incorporation of new modules for calculating observable quantities from model parameters. The structure of the program
allows straightforward parallelisation of the time-consuming property calculations. In pilot applications, I-NolLLS has been
interfaced with programs for calculating bound states of Van der Waals complexes, cross sections for molecular scattering
processes, and second virial coefficients of gas mixtures. Parallelisation of the property calculations has been achieved using
PVM running on a cluster of workstations.

Keywords: Interactive; Nonlinear least-squares; Molecular potential energy surface; Optimization; Model fitting

PROGRAM SUMMARY RS/6000 systems, but should be easily portable to Unix worksta-
tions from other manufacturers
Title of program: 1-NoLLS

Operating systems under which the program has been tested: Unix
Caralogue number: ADFN

Programming language used: FORTRAN 77 with some industry-

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland

Licensing provisions: Persons requesting the program must sign
the standard CPC nonprofit use licence

Conputers: The program was developed principally on IBM

| Present and permanent address: Department of Chemistry, Uni-
versity of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, UK.

standard extensions as described in the README file supplied
with the program

Memory required to execute with typical data: case-dependent
No. of processors used: case-dependent
Peripherals used: disc files, X-terminal

No. of bytes in distributed program including test data. etc.:

0010-4655/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved.

PII S0010-4655(97)00013-1

MM. Law, J.M. Hutson/Computer Physics Communications 102 (1997) 252-268 253

386275
Distribution format: uuencoded compressed tar file

Keywords: Interactive, nonlinear least-squares, molecular potential
energy surface, optimization, model fitting

Nature of physical problem
[-NoLLS permits interactive least-squares fitting of the parameters
of analytical models to physical properties or other data.

Method of solution

A variety of algorithms adapted to nonlinear least-squares op-
timization are used, including Gauss-Newton [!1], Levenberg-
Marquardt [2,3] and Singular Value Analysis based [4] algo-
rithms. The interactive nature of the code permits rapid and
flexible user control over the progress of the fit.

Typical running time: problem-dependent

Unusual features of the program

The user must supply a subroutine that calculates theoretical val-
ues of the quantities to be fitted and their first partial derivatives
with respect to the adjustable parameters.

Other required software: The Application Visualisation System
(AVS) [5] is required to provide the user interface.

References

[1] PR. Bevington, Data Reduction and Error Analysis for the
Physical Sciences (McGraw-Hill, London, 1969).

[2] K. Levenberg, Quart. Appl. Math. 2 (1944) 164.

[3] D. Marquardt, SIAM J. Appl. Math. 11 (1963) 431.

[4] C.L. Lawson and R.J. Hanson, Solving Least Squares Prob-
lems (Prentice-Hall, New Jersey, 1974).

[5] Application Visualisation System computer code, Release 5.0,
distributed by Advanced Visual Systems Inc., USA (1993).

LONG WRITE-UP

1. Introduction

The object of this paper is to describe an inter-
active program for fitting the parameters of a physi-
cal model to experimental or other data. The program
is called I-NoLLS (an acronym for Interactive Non-
Linear Least-Squares and pronounced ‘eye-knolls’).
The program was developed to deal with problems that
arise in the fitting of molecular potential energy sur-
faces to experimental results from spectroscopic and
scattering studies, but it is applicable to a wide range
of fitting problems.

The general theory of least-squares fitting is well
understood [1-4], and many general-purpose fitting
packages are available. However, in our experience
these packages are often unsuitable for fitting poten-
tial energy surfaces. The special characteristics of the
fitting problems that we encounter are the following:

(i) Very expensive calculations are needed to eval-

uate the observable quantities (physical prop-
erties) from a trial set of parameters. Conven-
tional least-squares packages are often written
on the assumption that the calculation is cheap,
and evaluate the properties for an unnecessarily
large number of parameter sets.

(ii) The problems are highly nonlinear, and often
poorly determined or underdetermined in math-
ematical terms. Under these circumstances, an
automated algorithm may try to sample unphys-
ical regions of parameter space, and either the
program crashes or the fit diverges. Nevertheless,
the scientist doing the fitting has physical insight
that can distinguish between different proposed
parameter sets, and can make choices about the
most appropriate parameters to adjust at each
stage of the fit.

The I-NoLLS program has been designed to handle
fitting problems with these characteristics, and to per-
mit the user to guide the fitting process using physical
intuition.

A major innovation in the I-NoLLS program is the
introduction of the concept of a super-Jacobian ma-
trix containing all the first partial derivatives of the
calculated properties with respect to the parameters of
the model. The user is able to select a variety of trial
submatrices from this matrix and for each submatrix
may choose between a variety of different algorithms
for calculating least-squares parameter steps.

The structure of the remainder of this paper is as fol-
lows. The problems associated with the least-squares
fitting of molecular potential energy surfaces to ex-
perimental data are outlined in Section 2, the parts of
the theory of nonlinear least-squares fitting needed for
our discussion are presented briefly in Section 3, the
I-NoLLS code is described in Section 4, and some ini-
tial applications are discussed in Section 5. Section 6
contains some concluding remarks.

254 MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

2. Fitting molecular potential energy surfaces

This section outlines the physical problem that moti-
vated the development of the I-NoLLS program. Users
who wish to use the code for different applications
may skip to Section 3.

Intermolecular and intramolecular potential energy
surfaces (PESs) are of central importance in molecu-
lar physics and many areas of physical chemistry [5].
The theory needed to calculate molecular properties
(such as energy levels and scattering cross sections)
from potential energy surfaces is highly developed [6-
13], though technically demanding and computation-
ally expensive. However, for most systems the limit-
ing factor is that we do not know the potential surface
accurately enough for property calculations to be re-
liable. Although ab initio electronic structure calcula-
tions can provide a great deal of information on poten-
tial energy surfaces, they are not yet cheap enough or
accurate enough for many purposes. Because of this,
a great deal of work has been done using empirical
PESs determined from experimental data. The avail-
ability of accurate empirical PESs for prototype sys-
tems is also crucial in evaluating and developing new
ab initio methods.

There are several approaches that have been used
to address the problem of determining molecular
PESs from experimental data. These may be classi-
fied loosely as (i) methods based on determining the
parameters of an assumed functional form, and (ii)
methods based on direct inversion of the experimen-
tal data, often to obtain a pointwise potential surface
[14,15]. In either case, it is often desirable to include
some information from ab initio electronic structure
calculations or other theoretical considerations in or-
der to determine regions or features of the PES that
are not well determined by experimental data.

The present paper concentrates on methods for de-
termining the parameters of an assumed functional
form. Although this has often in the past been done
simply by manual adjustment of selected parameters
to obtain agreement with a particular set of data, such
a procedure is not very satisfactory because it does not
give a clear indication of the uncertainties in the result-
ing potential. It is much better to use a proper nonlin-
ear least-squares procedure to determine the optimum
parameters, along with statistical information on their

uncertainties and the correlations between them 2.

The major problems encountered in applying least-
squares methods to the determination of molecular
PESs are those arising from severe nonlinearity and
the fact that the available data are often insufficient
in themselves to provide a unique solution for the po-
tential parameters. The nonlinearity requires that the
solution procedure is iterative and can make it compu-
tationally very expensive, while the underdetermined
nature makes it necessary for the scientist to apply
physical insight to choose between different possible
solutions as the fit proceeds. Even if the problem is
not strictly underdetermined, the parameters are often
highly correlated, and once again physical insight is
needed to obtain a satisfactory solution. It is not al-
ways possible to express the physical insight in terms
of explicit constraints on the parameters to be fitted.

In the last decade, reliable empirical potential en-
ergy surfaces have been obtained by least-squares fit-
ting for a variety of molecular systems [18]. In par-
ticular, high-resolution spectroscopic data have been
shown to provide very detailed information on po-
tential energy surfaces. Highly accurate PESs have
been determined for prototype systems such as Ar-
H, [19], Ar-HF [20], Ar-HCI [21], and HCN [22].
Most of these have been determined using standard
automated least-squares procedures, though the auto-
mated procedures proved poorly adapted to the special
problems encountered. Fits have also been described
for more complex intermolecular systems such as Ar-
CO, [23,24], Ar-OH [25,26], Ar-H,0 [27,28], Ar-
NH; [29], (HF); [30] and (HCI), [31], but it is
inevitable that for such larger systems the data sets
are less complete and greater problems due to cor-
relation and underdetermination are encountered. For
larger chemically bound systems such as CH3F [32],
it is usually possible to determine only the harmonic
force field from spectroscopic data.

Some programs for fitting PESs to experimental
data have been published, of which the most notable

2 The least-squares procedure is not the only method available
for parameter estimation. However, it is the most widely used in
the physical sciences. For discussions of its relationships to other
methods and its advantages we refer the reader to Refs. [16,17].
We note here only that least 23 squares affords an unbiased,
minimum-variance solution and that it is a maximum likelihood
estimator under the common assumption that the measurement
errors are independent and normally distributed.

M.M. Law, J M. Hutson/Computer Physics Communications 102 (1997) 252-268 255

are ASYM20 [1] and CFF-GOPT [33,34]. ASYM20
is a program designed to perform refinement of har-
monic force fields, with some modest interactive con-
trol implemented. CFF-GOPT includes a graphical
user interface and is adapted to the problem of devel-
oping force fields for molecular mechanics calcula-
tions using built-in potential energy functions. In com-
parison with these codes, I-NoLLS permits more flex-
ible interaction with the user, and offers a range of
different algorithms adapted to highly nonlinear least-
squares problems.

The general approach taken in our work is that the-
oretical values of molecular properties are calculated
for a given trial potential energy function using spe-
cialised codes. I-NoLLS compares the calculated and
experimental values, and adjusts the parameters so
as to reduce the residual discrepancies. The I-NoLLS
user is encouraged to choose between various possi-
ble steps in parameter space on physical grounds. The
whole process is repeated iteratively until convergence
is achieved or the user decides to stop.

3. Nonlinear least-squares fitting

There is no single least-squares algorithm that may
be regarded as universally the most effective. Differ-
ent algorithms are suited to different problems, and
indeed to different stages in a given problem. The best
algorithm depends on the computational expense of
calculating molecular properties, the availability of an-
alytic derivatives, the feasibility of parallelisation, the
degree of nonlinearity of the model, and so on. Com-
monly used algorithms include those based on Gauss—
Newton [3], Levenberg-Marquardt [35,36], singular
value analysis (SVA) [37], steepest descent [3] and
iteratively reweighted [38] steps. All of these require
the calculation of the Jacobian matrix of first partial
derivatives of the calculated properties with respect to
the parameters of the model (potential energy) func-
tion.

Since all of the algorithms listed above have been
thoroughly described and analysed in the literature,
only a brief outline of the main features of the first
three in the list above (which have been implemented
in the current version of the I-NoLLS program) will
be given here.

We define the least-squares problem as

2

n obs calc
. . .):4 — -/Y_ 1 e
minimise x? = [: i pn)

=l 7i
(1)
where y°" is the n-vector of observed properties, y<4l
is the corresponding vector of theoretically calculated
values, ¢; is the uncertainty assigned to data point i
and p is the m-vector of adjustable parameters.
To obtain an estimate of how to improve a trial
vector p of adjustable parameters, we first express

y*¢ as a Taylor series expansion about the current

parameter vector,
),caIC(p+x)=},caIC(p)+Jx+..., (2)

where x is a small change in the parameter vector. The
n X m matrix J is the Jacobian matrix of first partial
derivatives of the calculated properties with respect to
the model parameters,

avga]c
Ji' ==
= (3)
We also define the vector of differences
d=yobs_yc:110(p) =yobs —}’(P)- (4)

For a weighted least-squares fit, we define a diagonal
matrix G with nonzero elements

Gi=—. (5)
ag;
Some authors express this in terms of a weight matrix
W =G
If we assume that the model function y(p) is locally
linear in p, then we may neglect all but the first two
terms in the expansion (2) and reexpress problem (1)
as

minimise [|Ax — b||3, (6)

where A = GJ and b = Gd and the notation ||.||; de-
notes the Euclidean length of a vector. Our objective is
to find an optimum vector x describing a step through
parameter space.

3.1. Singular Value Decomposition

Several of the most useful least-squares algorithms
may be expressed [37] in terms of the Singular Value
Decomposition (SVD) of the rectangular matrix A,

A=UKV", (7

256 MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

where U and V are nxn and mx m orthogona matrices,
respectively, and, for n > m,

S
K=(0>. (8)

S is a diagonal matrix of dimension m whose elements
are the singular values of A and are arranged in de-
scending order,

5128532285, 20 (9

Expressing A in terms of its SVD, Eq. (7), and mul-
tiplying from the left by UT, problem (6) may be
transformed into

(5)e-s

where g = VTx and g = Uh. It can be shown [37]
that Eq. (10) has a solution vector g with components

2

minimise (10)

3
2

3]
q;= s, (11)
Hence Eq. (6) has the solution x = Vg. This parameter
step corresponds to the well-known Gauss-Newton
algorithm [3].

It should be noted that y*'° is nonlinear with respect
to the adjustable parameters, so that the process of
finding a new Jacobian matrix and generating a new
least-squares step must be repeated iteratively until it
converges on a minimum in the sum of squares. Even
then, there is no guarantee that the point that has been
located is the global minimum.

3.2. Parameter scaling

In physical applications, different elements of the
Jacobian matrix often have different dimensions (or
units). However, in order for a singular value decom-
position to be meaningful, either the matrix A must be
dimensionless or all its elements must have the same
units. The dimensions of the data points are removed
through the matrix G, because the uncertainty in each
data point has the same dimensions as the quantity it-
self. However, the choice of scaling for the parameters
is to some extent arbitrary: possible scaling factors to
reduce the parameters to dimensionless form include

(i) the units themselves 3 and (ii) an estimate of the
uncertainty in the parameter, such as its 95% confi-
dence limit.

3.3. Parameter correlation

A general problem associated with multidimen-
sional least-squares problems is that the parameters
are correlated. It is quite possible for a minimum in
the sum of squares to exist such that a small change
in any one parameter by itself causes a substantial
increase in the sum of squares, but that nevertheless
there are other directions in parameter space (corre-
sponding to linear combinations of the parameters)
which result in a much smaller increase in the sum of
squares. Under these circumstances, the parameters
are said to be correlated, and it is important to know
about such correlations. A commonly-used simple
measure of correlation is the correlation matrix C,

C=D"'eD", (12)
where @ is the variance-covariance matrix given by
6= (ATA) T =vsVT, (13)

and D is a diagonal matrix with elements given by
Djj = 0;1/ 2. Off-diagonal elements of the correlation
matrix close to 1 indicate that the ith and jth ad-
justable parameters are highly correlated. Parameter
uncertainties are also affected by correlation, and this
must be taken into account when computing the un-
certainties in quantities derived from the parameters.
Further details may be found in Ref. [17].

The correlation matrix detects only linear depen-
dencies between pairs of parameters. Correlations in-
volving more than two parameters may also exist. The
SVD approach affords a more general method of de-
tecting such correlations. Associated with each singu-
lar value s; of the matrix A is a direction in param-
eter space (defined by the corresponding column of
V). The singular directions are mutually orthogonal
and in contrast to the original parameters p are un-
correlated with one another. Each component g; in

3 Some authors ignore the question of parameter scaling, and
claim to carry out an unscaled SVA. This usually means that they
treat the physical quantities in the Jacobian as though they were
pure numbers, which implicitly amounts to scaling according to
the physical units as in (i) above.

M.M. Law, J. M. Hutson/Computer Physics Communications 102 (1997) 252-268 257

Eq. (11) reduces the sum of squares function by an
amount gf. The largest singular values correspond to
the best-determined directions in parameter space, and
the smallest singular values to the least-determined di-
rections. In the limit s; 3> s, the direction associated
with the largest singular value corresponds to the di-
rection of steepest descent.

3.4. Avoiding long steps in parameter space

As mentioned above, the parameter step x = Vg cor-
responds to the Gauss-Newton algorithm [3]. How-
ever, it must be remembered that this step will reach
the actual minimum in the sum of squares only if
the problem is linear, i.e. if the Jacobian is indepen-
dent of the parameter values. In nonlinear problems
far from the minimum, the Gauss-Newton step is of-
ten far too long for the linearisation to be valid. The
Gauss—Newton algorithm can then produce a param-
eter set that gives a very poor fit to the data, or in
drastic cases is unphysical.

One common modification to alleviate the prob-
lems of nonlinearity is simply to multiply the Gauss-
Newton step by a reduction factor f, with f <1 [1].
This may produce a worthwhile improvement in the
quality of fit without moving so far that the lineariza-
tion fails. However, it is often better to select a param-
eter step composed of only the first k components of g
(corresponding to the k best-determined singular di-
rections). Such a step does not actually minimise the
sum of squares of errors in the linearised problem, but
often produces a large reduction for a relatively short
step in parameter space. It therefore reduces the like-
lihood of straying outside the near-linear region of pa-
rameter space or reaching an unphysical region of pa-
rameter space. This approach also makes it straightfor-
ward to handle underdetermined least-squares prob-
lems, including the case m < n. Ref. [39] gives fur-
ther discussion of this topic in the context of ‘snow-
ball’ fitting.

3.5. Levenberg—-Marquardt algorithm

Another approach that is commonly employed to
improve the conditioning of the least-squares prob-
lem and to reduce the length of the parameter step
is the Levenberg-Marquardt approach [35,36]. This

may conveniently be expressed in terms of the SVD
of the matrix A by modifying Eq. (6) to read

i |(6,)< (6)

where 1, is the identity matrix and A is a positive
scalar. The Levenberg—Marquardt approach thus adds
m rows to the Jacobian and data matrices, in effect
adding the current parameter values as data points with
a weighting determined by A. Using the SVD of A as
before and applying additional orthogonal transforma-
tions (Givens rotations) to eliminate the elements of
Al from the left-hand side gives an equivalent prob-

2

, (14)
2

lem [37],

e Syhem) gM\|I°
minimise }(Onxm 77 = |y J (15)
where
oM = gisi/(s3+ A2 j=1,..\m, (16)
J g J=m+1,...,n,

WY = —gA/(s5+)2 j=1,.m (1)
and S? is a diagonal matrix with nonzero elements
sV =t +2 j=10m. (18)

The solution vector, g'*’, of Eq. (15) has components

2
=g
s} +A2 Y s% + A%’

Jj=1,...,m (19)

(A)
w _8& _ &iSj
JT o n T
5;

Each component of ¢‘*) reduces the sum of squares
of errors by

2N
gl - 5— j=1 m (20)
7 S?—%—/\Z ’ 90 0 0y .

Egs. (14)-(20) may be regarded as a generalisation
of the SVD-based equations, with (s} +A%)1/2 replac-
ing s5;. Setting A = O recovers the Gauss—Newton step,
and its SVD components, while a value of A that is
large compared with the largest singular value of A
yields a very short parameter step along the direction
of steepest descent. The former is usually the most ap-
propriate for nearly linear problems or near to a solu-
tion, whilst the latter leads to more efficient iterations

258 MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

for highly nonlinear problems far from the solution. It
can be seen from Eq. (19) that increasing A prefer-
entially attenuates parameter changes along the most
poorly determined directions (that is, those associated
with the smallest singular values). Even within the
Levenberg-Marquardt approach, it is often advanta-
geous to include only the first X components of g%,
corresponding to the & best-determined directions in
parameter space.

The most appropriate value for A depends on the
degree of nonlinearity of the model function. Although
it is often desirable to choose A manually, automated
procedures are also available for choosing values of A
for a sequence of iterations [40].

For further discussion of the SVA and Levenberg-
Marquardt algorithms and the relationship between
them, see Ref. [37].

3.6. Parameter constraints

It is often desirable to constrain a least-squares
problem to a subspace of the full m-dimensional pa-
rameter space. A set of ¢ linear parameter constraints
may be specified in the form

Tp=r, (21)

where T is a ¢+ x m matrix of coefficients and 7 a ¢-
vector of scalars. Such constraints may be taken into
account in the calculation of the least-squares param-
eter step, x, using the method described by Gill et
al. [4]. Briefly, the problem (6) is recast as

minimise ||AZx — b|3, (22)

where Z is an m x (m — t) matrix whose columns are
orthogonal to the rows of 7. This procedure can be
used to impose constraints on the end point of a step
even when the starting point does not conform to the
constraints.

Another possibility is that the user may wish to re-
strict the parameter values to a certain region of param-
eter space, without imposing rigid constraints. This
may be done simply by extending the vector of “ob-
servable” properties y°* to include the preferred val-
ues for the parameters concerned, each with an associ-
ated uncertainty. This has been termed the “method of
predicate observations” [41]. It both allows the user
to build in expectations about parameter values based

on factors external to the fit (such as theoretical val-
ues or prior experience) and may alleviate problems
associated with parameter correlation. Each parameter
may be viewed as being “tied” to its predicate value
by a spring whose stiffness is determined by the asso-
ciated uncertainty.

The method of predicate observations may easily
be generalised to allow any function of the parameters
(linear or nonlinear) to be treated as an “observable”.

4. 1-NoLLS program
4.1. Philosophy

The basic philosophy of the I-NoLLS program
is that, at each iteration, the user requests a super-
Jacobian matrix, which contains all the data that
might be included in the fit and all the parameters that
might be varied. After inspecting the current qual-
ity of fit, the user can point and click with a mouse
to select a sub-Jacobian containing a subset of the
data and parameters for inclusion in the current least-
squares step. For example, if some of the parameters
cannot yet be reliably determined from the data, or if
the forwards calculation fails for some of the prop-
erties, it may be desirable simply to click them out
of the fit and proceed with the remainder. Once the
sub-Jacobian is chosen, the user can experiment with
different algorithms for calculating the next step, and
can select one that seems physically acceptable. If at
this stage the full parameter space is found to be too
correlated for a sensible step to be identified, the user
may select a new (and usually smaller) set of ad-
justable parameters for inclusion in the sub-Jacobian,
without needing to recalculate any Jacobian matrix
elements. The user may also choose to include one
or more linear parameter constraints. Finally, after a
promising step has been chosen, I-NoLLS carries out
a single calculation of the properties for the new set
of parameters, and in the light of the results the user
can choose either to accept the step (and perhaps pro-
ceed to calculate a new super-Jacobian) or to reject
the step and try to find a better one based on the old
super-Jacobian.

M.M. Law, J.M. Hutson/Computer Physics Communications 102 (1997) 252-268 259

4.2. Program modules

The I-NoLLS package consists of a main mod-
ule (executable main.g) and four separate interac-
tive program modules results, ptoggl, chsalg
and chsflm (executables results.g, ptoggl.g,
chsalg.g and chsflm.g). The interactive modules
are initiated as separate processes as required by the
corresponding main. g subroutines. results is used
to view the least-squares statistics and toggle on or off
various interactive stages. ptoggl is used to choose
which data and model parameters to include in the
super-Jacobian and sub-Jacobian matrices and which
constraints to include. chsalg is used to choose be-
tween different least-squares algorithms and scalings,
and chsflm allows the user to consider and select
suitable SVA and/or Levenberg-Marquardt parameter
steps.

All the interactive modules communicate with the
main process via disc files as shown in Fig. 1. main
performs all the important input/output operations and
provides most of the numerical functionality needed
for the least-squares fitting process. It calls a user-
supplied subroutine CALCYJ to evaluate the vector
y°¢ of calculated properties and/or the Jacobian ma-
trix J corresponding to the current parameter vector

p-
4.3. User interface

I-NoLLS uses a graphical user interface to give the
user rapid and flexible control over the progress of the
fit. In the present implementation, we have adopted
the Application Visualisation System (AVS) [42] to
provide the interactive functionality. AVS provides a
library of module control widgets, such as dials, tog-
gle icons and type-in dialog boxes, all controlled by
mouse clicks. In our applications, we have used a
colour X-terminal as the display device. AVS also of-
fers advanced graphics capabilities that allow for the
possible future development of sophisticated visuali-
sation functionality for the complex data sets associ-
ated with least-squares fitting.

The main module main. g is implemented in FOR-
TRAN 77 as an AVS ‘co-routine’ (represented in AVS
by an icon labelled ‘I-NoLLS’). This calls the main
least-squares subroutine ILS. The latter is written en-
tirely independently of AVS and makes calls to all the

main.g results.g

‘
! ptoggl.g

chsflm.g

chsalg.g

A

KEY
— Program module

@ O Disk file

Fig. 1. Program module flow diagram. Disc files are indicated
by FORTRAN unit numbers. Note that the modules results,
ptoggl, chsalg and chsflm may be invoked many times by the
module main.

other subroutines and program units.

The user interaction modules are implemented as
four separate AVS ‘subroutine’ modules, also in FOR-
TRAN 77.

The modularity of I-NoLLS ensures that the inter-
active components provided by AVS could easily be
replaced by equivalent routines based on some other
widget library or visualisation system, or could even
be replaced by an entirely different method of driving
the least-squares code (such as an expert system).

260 M.M. Law, J.M. Hutson/Computer Physics Communications 102 (1997) 252-268

i MAIN I

ILS

DTRSM
- CNSTRN }——{ QLCONS |—{ DORGLG]

Fig. 2. Structure of module main. A number of service routines
have been omitted.

4.4. Subroutine structure

The subroutine structure of main.g is shown in
Fig. 2. Brief descriptions of the functions of the most
important subroutines are given in Table 1. The user-
supplied routine CALCY]J is described in detail in sub-
section 4.6.

Of the interactive program units, chsflm.g is the
only one which has any significant subroutine struc-
ture, as shown in Fig. 2.

4.5. Description of input

The I-NoLLS program follows the convention that
variables with names beginning with A-H and O-Y
are 8-byte reals, those with names beginning with I-
N are integers, and those with names beginning with
Z are logicals.

The program runs principally under interactive con-
trol using a mouse or similar pointing device. Never-
theless, the basic information about the properties to
be fitted, the parameters to be determined, and any lin-
ear constraints to be applied is read from a formatted
file (stream IIN with the filename extension ‘.data’).
The contents of the data file are as follows:

Record 1: TITLEO (A72) 72-character title.

Record 2: NPARMO, NDATAQO, NJCPO, NRCPO,
NJICYO, NRCY0, NCONSO, IPRINT (free format).
NPARMO Number of parameters to be read.
NDATAQO Number of data points to be read.

NIJCPO Number of INTEGER controls associated
with each parameter.

NRCPO Number of REAL*8 controls associated
with each parameter.

NJCY0O Number of INTEGER controls associated

with each data point.
NRCYO Number of REAL*8 controls associated
with each data point.
NCONSO Number of constraints to be read.
IPRINT Print level.
=0, no output to *.out file.
= 1, normal output to *.out file.
= 2, beginner’s help.
> 2, extensive debugging output, not de-
scribed here.

Record 3: NITER (free format).

NITER is reserved for future expansion; for this ver-
sion, set NITER to —1 and terminate the card with the
‘/* character.

Record 4 - Record 3+NPARMO: PLABEL (A16),
PO, ICPO, (JCPO(I), 1 =1, NICPO), (RCPO(I),I =
1, NRCPO) (free format after 16-character label).

These records specify the parameters of the model
function. Each parameter has associated arrays of inte-
ger and real control parameters; these control param-
eters are not used by I-NoLLS itself, but are passed to
CALCY]J and may be used as desired by the specialist
codes for calculating properties.

M.M. Law, J M. Hutson/Computer Physics Communications 102 (1997) 252-268 261

Table 1
[-NoLLS subroutines and their functions

ILS Principal I-NoLLS subroutine: reads input data and handles calls to major subroutines.

RESULTS Views the fit and select between running modes.

PTOGGL Toggles data/parameters in/out of fit.

CHSALG Interactive choice of least-squares algorithm.

CHSFLM Interactive choice of Levenberg-Marquardt parameter.

CALCYJ User-supplied routine to calculate properties and their derivatives with respect to the model parameters.

LLSQF & QROD Calculate Gauss-Newton parameter step®.

SVALSS Calculates and writes out the set of SVD parameter steps or the corresponding steps modified by a nonzero
Levenberg-Marquardt parameter.

DGESVD LAPACK routine [48] to calculate the singular value decomposition used by SVALSS.

FLMCAL & FLETCH
Fletcher [40].

Provide an automatic selection of the Levenberg-Marquardt parameter using an algorithm proposed by

CNSTRN & QLCONS Adjust vector of differences and Jacobian to take constraints into account.

CNSTEP

Adjusts parameters with linear constraints.

DGELQF & DORGLQ LAPACK routines [48] to compute QL factorisation used by QLCONS.

DTRSM

Level 3 BLAS routine [49] called by QLCONS to solve matrix equation for constrained parameter space.

4 The LLSQF and QROD subroutines were written by M. Dulick, adapted by R.J. Le Roy (University of Waterloo) and modified by the

present authors.

PLABEL String label for parameter.

PO Initial trial parameter value.

ICPO = |, parameter is initially included in fit.
= 0, parameter is initially excluded from
fit.

JCPO(I) Array of INTEGER control parameters
used by CALCY]J.

RCPO(I) Array of REAL*8 control parameters used
by CALCYJ.

Record 4+NPARMO - Record 3+NPARMO+
NCONSO: CLABEL (A16), ICCO, (CONSTM(I), I
= 1, NPARMO), BR (free format after 16-character
label).

These records specify any linear parameter constraints
that may be applied in the fitting process. Note that the
user has the opportunity to toggle these constraints in
and out of the fit interactively as the fit proceeds.

CLABEL String label for constraint.

ICCO = 1, constraint is initially included in
fit.
= 0, constraint is initially excluded
from fit.

CONSTM(I) Coefficients of the parameters in the
constraint (elements of the constraint
matrix 7).

BR Constant term in constraint (element of
vector 7).

Record 4+NPARMO+NCONSO - Record 3
+NPARMO+NCONSO+NDATAO: YLABEL (A16),
ICYO, (JCYO(I),I= 1, NJCYO0), (RCYO(D),I=1,
NRCYO0) YO, UYO (free format after 16-character
label).

These records specify the experimental data that are to
be fitted. Each data point has associated arrays of inte-
ger and real control parameters; these control param-
eters are not used by [-NoLLS itself, but are passed to
CALCY]J and may be used as desired by the specialist
codes for calculating properties.

YLABEL String label for datum (observable
quantity).

ICYO = 1, datum is initially included in fit.
= (0, datum is initially excluded from fit.

JCYO(I) Array of INTEGER control parameters
used by CALCY].

RCYO(I) Array of REAL*8 control parameters used

by CALCY]J.
YO Value of datum.
UYo Uncertainty in datum.

4.6. Specification of subroutine CALCY]J

The subroutine CALCYJ must be supplied by the
user. Its purpose is to calculate the properties corre-
sponding to a trial set of model parameters and the
super-Jacobian matrix of their derivatives with respect

262 M.M. Law, J.M. Hutson/Computer Physics Communications 102 (1997) 252-268

to the parameters. In complicated applications, CAL-
CYJ may start up other programs to perform the prop-
erty calculations, rather than containing all the neces-
sary code itself.
Any predicate observations can be dealt with very
simply by including appropriate code in CALCY]J.
The calling sequence for CALCYT is

SUBROUTINE CALCYJ(IY1, IJI, NPARMO,
NDATAOQ, PO, ICPO, RCPO, Y0, ICY0, RCYO, Y1,
DYDPI, NPARMI1, NDATA1, ZFNERR, JCPO,
JCYO0)

NPARMO, NDATAQO, NPARM1 and NDATAI are
integer variables, and ZFNERR is a logical variable.
The remaining parameters are arrays, which must
be dimensioned the same as in the calling routine
(IMAIN). The dimensions are

PO(MXPARM)
ICPO(MXPARM,MXICPQ)
RCPO(MXPARM,MXRCPQ)
YO(MXDATA)
ICYO(MXDATA MXICYO)
RCYO(MXDATA MXRCYO0)
Y1(MXDATA)
DYDP1(MXDATA ,MXPARM)
JCPO(MXPARM ,MXIJCPO)
JCYO(MXDATA ,MXJCYQ)

All the dimensions are defined as FORTRAN PA-
RAMETERS in the include file Is.par.h, which is sup-
plied as part of the I-NoLLS distribution.

The variables NPARMO and NDATAQ and the ar-
rays PO, ICPO, RCPO, YO, ICYO0, RCYO, JCPO and
JCYO have the same significance as described in Sub-
section 4.5 above (except that they refer to current val-
ues, which may have been changed during the course
of the fit so far). These together with the variables
IY1 and IJ1 must be left unchanged by CALCY]J. The
variables NPARM1, NDATA1 and ZFNERR and the
arrays Y | and DYDP1 must be calculated and returned
by CALCY]J.

It may be necessary for CALCY]J to read from the
data file or write to the output file. If so, it may incor-
porate the COMMON block

COMMON /Al1/ IIN, IOUT, IPRINT

where IIN, IOUT and IPRINT are INTEGER variables
(defined in subroutine ILS). IIN and IOUT are the
FORTRAN unit numbers of the input and output files,

and IPRINT is the (input) print level control. Channel
IOUT should be used for debugging output or error
details.

The usage of the remaining parameters in the calling
sequence is as follows:

IYl Integer flag (input):
=1, Y1 array (calculated properties)
must be returned.
=0, Y1 array must be left unchanged.

I Integer flag (input):
= 1, DYDPI array (super-Jacobian)
must be returned.
= 0, DYDPI array must be left
unchanged.

Yl Array of
(output):
If IY1 is 1 on input, the elements of
Y I must be returned containing the val-
ues of the properties calculated for the
trial set of parameters supplied. Note
that all NDATAOQ elements of Y1 must
be returned, even if the data point con-
cerned is not currently included in the
super-Jacobian.

DYDP1 Array of dimension
MXPARM) (output):
If IJ1 is 1 on input, DYDP1 must be
returned containing the super-Jacobian
matrix, i.e. the matrix of first partial
derivatives of the calculated properties
with respect to the model parameters.
Note that an element of DYDP] needs
to be returned only if both the data
point and the parameter concerned are
required in the super-Jacobian, as spec-
ified by ICPO and ICYO. DYDP1 is re-
turned packed, so that only elements
up to DYDP1(NDATA1NPARMI)
are occupied; there are no rows and
columns containing zeroes for data and
parameters that are not in the super-
Jacobian.

NPARMI Integer variable (output):
If IJ1 is 1 on input, NPARM1 must
be returned as the number of model
parameters included in the super-

dimension MXDATA

(MXDATA,

MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268 263

Jacobian (that is, the number of
columns of DYDP1 returned). CAL-
CY]J can calculate this by scanning the
array ICPO to count the number of 1s.
NDATAI1 Integer variable (output):
If IJ1 is 1 on input, NDATA]1 must
be be returned as the number of data
points included in the super-Jacobian
(that is, the number of rows of DYDPI1
returned). CALCY]J can calculate this
by scanning the array ICYO to count
the number of 1s.
ZFNERR Logical flag (output):
=TRUE. if an error occurred in
CALCY]J.
=.FALSE. if no error occurred in
CALCY]J.
If the value .TRUE. is returned, then I-
NoLLS displays an on-screen warning
ERROR IN CALCY]J, which the user
must acknowledge before proceeding.
I-NoLLS then carries on as normal; it is
up to the user to look in the output file
(unitIQUT) for any (user-defined) er-
ror details written by CALCY]J.

4.7. User interaction and output

The program is started by opening the AVS Network
Editor and pulling down the icon labelled I-NoLLS.
Next, the user selects a data file (as described in Sec-
tion 4.5) from a menu listing all files with extension
‘data’ in the AVS data directory. The program then
performs a single property calculation at the point in
parameter space specified in the data file.

As I-NoLLS proceeds, it calculates key sets of
statistics which the user may wish to consider in as-
sessing the desirability of a particular least-squares
step. These results may be viewed interactively (as
described below) and are also recorded in the output
file. The latter inherits the filename of the input file
with the extension ‘.data’ replaced by ‘.out’. Through-
out the output listing, the user-defined parameter, data
and constraint string labels are attached to the often
large and complex tables and matrices.

Most of the main user interaction menus include a
context-sensitive HELP button, which opens a window
displaying information about the options available at

that stage.

After the initial property calculation, I-NoLLS en-
ters the results module. The results display in-
cludes the variance o =)(2 /(n—m), which summa-
rizes the overall quality of fit* . To see a more detailed
breakdown of the results, the user may pick the View
Qutput button, which starts up a text editor (vi by de-
fault) to view the main output file. At this stage, the
output file contains listings of the observed and cal-
culated values of each property and the correspond-
ing weighted and unweighted residuals (observed-
calculated values).

The results module also displays a number of
switches that control the extent to which I-NoLLS will
request user interaction as the fit proceeds. Each switch
may be toggled between on (highlighted) and off
(unlit) states with mouse clicks. The Sup-Jac Param,
Sup-Jac Data, Sub-Jac Param and Sub-Jac Data
switches control whether the user will be prompted
to reselect the fitting parameters and data to be in-
cluded in the super-Jacobian and sub-Jacobian ma-
trices each time the program reaches the appropriate
point. The Constraints switch controls whether the
user is prompted to reselect which linear constraints
are to be applied, while the Algorithms switch con-
trols whether the user is prompted to reselect a least-
squares algorithm each time the program is ready to
generate a new least-squares step.

The user may leave the results module by pick-
ing either Choose/Calculate Jacobian or Do N
cycles. The latter simply executes N least-squares
cycles without further interaction, using automati-
cally adjusted steering parameters; the value of N is
taken from the adjacent dialog box. If the user picks
Choose/Calculate Jacobian, I-NoLLS starts up
the ptoggl module to allow the user to specify the
super-Jacobian matrix (provided the Sup-Jac Param
and/or Sup-Jac Data switches are set on). ptoggl
displays a list of parameters and/or data, each repre-
sented by a button showing the user-supplied string
that identifies the quantity concerned: mouse clicks
are used to highlight the quantities that are to be in-
cluded in the super-Jacobian. Once the selection is

4 Note that the list of parameters and data included in the fit, and
hence the interpretation of o2, may change under user control as
the fit proceeds.

264 MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

complete, the user picks Done to proceed to the next
stage.

Once the parameters and data have been selected,
I-NoLLS proceeds to calculate the super-Jacobian.
This is usually the most expensive part of the cal-
culation. The complete super-Jacobian is written to
the main output file. I-NoLLS then enters ptoggl
again (twice) for the user to select a sub-Jacobian,
and once more for the user to pick the linear param-
eter constraints to be included (if any were included
in the data file). Again, these calls to ptoggl are
suppressed if the corresponding switches are set off.

The program then enters the chsalg module, which
allows the user to choose a least-squares algorithm
to be applied in the next step. The present version
of I-NoLLS offers three choices: Gauss—--Newton,
SVA-LM scaling 1 and SVA-LM scaling 2. The lat-
ter two use different scalings to reduce the Jacobian
matrix to dimensionless form before the singular value
decomposition. Scaling 1 simply scales by the units
in which the parameters were input: in other words, it
treats the values in the Jacobian matrix as though they
were pure numbers, not physical quantities. Scaling 2
scales the parameters by their 95% confidence limits
instead.

The Gauss-Newton least-squares algorithm has no
steering parameters, so the program proceeds directly
to the next call of results as described below. How-
ever, if one of the SVA-based algorithms is selected
in chsalg, I-NoLLS next enters the module chsf1m,
which allows the user to experiment with the con-
trol parameters of the Singular Value Analysis and
Levenberg—-Marquardt algorithms. chsflm computes
and maintains an interactive display of several ma-
trices and other quantities that are valuable in solv-
ing difficult least-squares problems. These include the
singular values s5; of the matrix A, the correspond-
ing left-hand and right-hand singular vectors (i.e.,
the matrices U and VT, respectively) and the rank of
A’ . chsflm also displays the ratio of the largest and
smallest (nonzero) singular values, which is a good

3 As usual, the parameters and data are identified where pos-
sible by the corresponding user-supplied strings. However, when
parameter constraints are being applied, the parameter space is
subject to an additional linear transformation which complicates
the interpretation of the singular vectors. In I-NoLLS version 1.0,
some of the output is suppressed when constraints are in force.

measure of the overall correlation of the least-squares
problem.

chsflmgives the user the opportunity to experiment
interactively with different values of the Levenberg-
Marquardt parameter A. When a value of A is typed in
to an on-screen dialog box, tabulations are displayed
showing the length of the resulting parameter step,
the predicted (linearised) reduction in o* and the pa-
rameter changes associated with each SVA component
of the solution vector g. The corresponding predicted
residuals are also given. All these quantities are up-
dated interactively when the user alters the on-screen
value of the Levenberg-Marquardt parameter.

chsflm also allows the user to choose a parame-
ter step composed of only the k best-determined di-
rections in parameter space, corresponding to the k
largest singular values of A.

Once promising values of A and k have been cho-
sen, the user exits from chsf1lm. The proposed param-
eter values, their changes and 95% confidence limits,
and the correlation and variance-covariance matrices
are written to the output file. I-NoLLS then reenters
results, which displays the predicted value of the
variance o and offers the opportunity to view the out-
put file. The user may also change the values of the
switches that control user interaction. At this stage,
the user may either reject the step and return to seek a
new one based on the old super-Jacobian (but perhaps
using a new sub-Jacobian or another least-squares al-
gorithm), or may pick Try parameter step to accept
the proposed step provisionally and carry out a calcu-
lation of the actual properties and residuals at the new
point in parameter space. results also offers the op-
tion to reduce the length of the step by multiplying it
by areduction factor if desired. If the step is accepted,
the actual calculated values are tabulated in the output
file, along with associated quantities such as the origi-
nal observed values, the (observed-calculated) resid-
uals, the uncertainties and the weighted squares of the
residuals.

After the property calculation, I-NoLLS reenters
results and the user has a final opportunity to inspect
the results and either confirm acceptance of the step or
return to seek a new step based on the old parameter
values and super-Jacobian. If the user picks Accept
parameter step, I-NoLLS will proceed to another
iteration, calculating a new super-Jacobian at the new
point in parameter space. Alternatively, the user may

M.M. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268 265

pick Exit I-NoLLS to close down the program.

5. Applications

We developed I-NoLLS principally using real ex-
amples from molecular physics. These examples are
described in Section 5.2 below. However, the complex-
ity of the property calculation codes used in the real-
world examples is such that it is not feasible to sup-
ply the whole suite of programs to Computer Physics
Communications. We have therefore supplied code for
a very small test problem, which nevertheless allows
the principal features of I-NoLLS to be demonstrated.
However, it should be remembered that I-NoLLS was
developed specifically to handle cases where the prop-
erty calculation is very expensive, and this particular
feature is not shared by the test problem.

5.1. Example supplied

The test data file and CALCY]J subroutine supplied
have been prepared for the example model function
known as Rosenbrock’s sum of squares, which has
been extensively used for testing the convergence of
least-squares methods [40,4]. It is defined as

xi=di +d, (23)
where

dy=1-—p (24)
and

dy =10(p, — pi). (25)

Here d; and d; correspond to the (observed-
calculated) residuals in a least-squares problem. Since
m = n, the fitting program is actually solving a nonlin-
ear system of equations. This compact model function
is adequate to illustrate the problems associated with
severe nonlinearity and highly correlated parameters.

The quantity y*(pi,p2) is plotted as a contour
diagram in Figs. 3 and 4. The minimum is at (1,1)
and the correlation between p; and p; is 0.9988 at
this point. Fig. 3 illustrates a least-squares fit using
the automatic Levenberg-Marquardt (LM) algorithm
described by Fletcher [40]. The starting point is
(—1.5,1.5) with the LM parameter A initially set to

2.0

I
-2.0 -1.0 0.0 1.0 2.0

Fig. 3. Minimisation path for Rosenbrock’s sum of squares using
Fletcher’s automatic Levenberg-Marquardt algorithm [40].

2.0

-2.0

2.0

Fig. 4. Minimisation path for Rosenbrock’s sum of squares using
Fletcher's automatic Levenberg-Marquardt algorithm [40] with
an initial step allowed to increase y?.

3.161. This latter value is 10 times the lower of the
two singular values, and is large enough to ensure
that the first step is ‘downhill’. The algorithm follows
the valley slowly along its curved path, and 16 itera-

266 MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

tions are required to get to within a distance from the
solution (in parameter space) of 0.01. The length of
each step is effectively restricted by the criterion that
a step is considered acceptable only if it results in a
reduction in y2.

In our work on fitting molecular potential energy
surfaces we have frequently encountered analogous
cases where an automatic algorithm makes very slow
progress along a curved valley in the sum of squares.
In such a situation it is often advantageous for the
user to intervene and force the program to take one
long step that actually increases x°. This gets the fit
‘around the corner’ of the valley and subsequent con-
vergence of the fit is much more rapid. This behaviour
is illustrated for Rosenbrock’s function in Fig. 4. For
the same starting conditions as before, A is set initially
to 0.3161 (equal to the lower singular value) and the
fit is allowed to take the first, apparently unprofitable
step before proceeding using Fletcher’s automatic al-
gorithm as above. In this case only 3 further iterations
are required for convergence.

5.2. Interface with codes for molecular properties

As part of the development process, we have ap-
plied I-NoLLS to a number of real problems in chemi-
cal physics. Each application prompted improvements
in the user interface or revealed the desirability of ad-
ditional features and capabilities.

I-NoLLS has been interfaced with a number of
codes for calculating molecular properties from po-
tential energy surfaces:

- the BOUND code [11], for calculating spectro-
scopic properties of Van der Waals complexes;

— the TRIATOM [12] and DVR3D [13] codes, for
calculating spectroscopic properties of chemically
bound species;

- the MOLSCAT code [10], for calculating cross sec-
tions for inelastic molecular collisions;

- the VIRIAL code, for calculating second virial co-
efficients of gas mixtures.

In our pilot applications, the derivatives of the
molecular properties required for the Jacobian ma-
trices were calculated by finite differences. For an
m-parameter problem this requires m + 1 evaluations
of the set of properties for single-sided derivatives,
or 2m + 1 evaluations for two-sided derivatives.
Under these circumstances, calculation of the super-

Jacobian may always be parallelised. In practice each
of the m + 1 subcalculations may be further subdi-
vided according to molecular symmetry or quantum-
mechanical considerations.

We have used the [-NoLLS/BOUND/MOLSCAT/
VIRIAL code mostly on a cluster of 18 IBM RS/6000
workstations at Durham, using PVM (Parallel Virtual
Machine) [43] library calls to pass the current values
of the model parameters to the specialist dynamical
codes and receive back the corresponding molecular
properties. The specialised version of the subroutine
CALCY]J used for these applications (not supplied to
Computer Physics Communications) implements an
efficient task-farming strategy aimed at achieving op-
timum load balancing between processors. Since only
CALCY] needs to be interfaced with the codes for cal-
culating properties, it is straightforward to incorporate
new versions of the codes, or codes for new properties
(or even completely different applications).

We have also implemented a version of
I-NoLLS/BOUND using CONDOR-PVM [44] on
a large cluster of general-purpose Hewlett-Packard
workstations in Durham. The CONDOR-PVM system
allows the expensive dynamical calculations to use
spare computing power on the workstations, while
not interfering with interactive use.

5.3. Initial applications in molecular physics

I-NoLLS has been used to determine interaction
potentials for He-Ar™ [45], He-Kr* [46], He-
HCN [47] and Ar-CO; [24]. Other applications are
in progress.

The first application, to the He-Ar* ion [45], was
motivated by measurements of the microwave spec-
trum of He-Ar* by Carrington et al. The spectra cor-
respond to ions in vibration-rotation levels very near
dissociation to form the 2P, and 2P/, states of Ar*.
For these levels, the Born—-Oppenheimer approxima-
tion has completely broken down, and coupled chan-
nel calculations are essential to reproduce the observed
spectra accurately. We used the I-NoLLS/BOUND
code to fit a potential energy surface (equivalent to a
set of three potential curves and the couplings between
them) to the microwave spectra and earlier results
from ultraviolet spectroscopy. The final fit involved 88
data points and 7 free potential parameters [45]. This
first real-world application was used to guide develop-

MM. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268 267

ment of the I-NoLLS code, including its user interface
and its interface with BOUND.

Carrington et al. subsequently measured analo-
gous microwave spectra of He-Kr*. These proved
much more difficult to assign than those for He-Ar™.
However, with the help of I-NoLLS, we were able
to carry out least-squares fits for a variety of ten-
tative assignments of a subset of the lines until we
found one that succeeded in explaining the remaining
lines. This “bootstrap” approach eventually led to a
near-complete assignment of the observed lines, and
allowed us to obtain a full potential energy surface
for He-Kr* [46]. This would have been a quite
impossible task without the [-NoLLS program.

I-NoLLS has also been used to determine inter-
molecular potentials by fitting to spectroscopic data
for the He-HCN and Ar-CO, Van der Waals com-
plexes. The Ar-CO; application [24] included simul-
taneous fitting to second virial coefficients as well as
spectroscopic data.

I-NoLLS is currently being applied to determining
the intermolecular potential of Ar-H,O by simulta-
neous fitting to the spectra of Van der Waals com-
plexes (BOUND) and inelastic scattering cross sec-
tions (MOLSCAT).

I-NoLLS has also proved valuable in fitting to ab
initio points for a variety of systems, including Ar,-
HF.

I-NoLLS can also be used in an “off-line” mode, in
which the computationally expensive property calcu-
lations are performed remotely, for example on a par-
allel or vector supercomputer. In these circumstances
it is most convenient for I-NoLLS to communicate
with the property calculation codes via disc files rather
than PVM calls. It would also be possible to imple-
ment this mode of operation using remote procedure
calls.

6. Conclusions

The I-NoLLS program is a new interactive tool for
difficult least-squares fitting problems. The program is
valuable when conventional automated least-squares
procedures fail, either because they take too much
time carrying out property calculations at an excessive
number of points in parameter space, or because the
automated procedure strays into unphysical regions of

parameter space. The I-NoLLS program allows the
user to guide the progress of the fit by applying physi-
cal intuition, and to avoid parameter steps that appear
unprofitable or unphysical. Least-squares steps can be
tested before they are finally accepted, allowing the
fit to recover from forays into unphysical regions of
parameter space.

The I-NoLLS program has been interfaced to sev-
eral packages for calculating molecular properties, and
has been used for the determination of interatomic and
intermolecular potential energy surfaces from spectro-
scopic and other data. However, I-NoLLS is specifi-
cally written to be highly modular, and can easily be
interfaced with other codes for calculating different
properties. It may thus be applied in a wide variety of
optimisation problems in different fields.

Acknowledgements

This work was funded by the Science and Engi-
neering Research Council as the “flagship” project of
CCP6 (the Collaborative Computational Project on
Heavy Particle Dynamics) for 1993-96. We are grate-
ful to Jonathan Tennyson and Ian Mills for valuable
discussions on the least-squares fitting problems en-
countered in fitting intramolecular potential energy
surfaces, and to Keith Atkins and Andreas Ernesti for
suggesting a number of improvements to the program.
We are also grateful to Lydia Heck for assistance with
PVM and to Nigel Starling for work on the CONDOR-
PVM implementation. JIMH thanks the Nuffield Foun-
dation for the award of a one-year Science Research
Fellowship in 1993-94, MML thanks the Royal Soci-
ety for the award of a one-year Research Grant. De-
velopment work was carried out on a cluster of IBM
RS/6000 workstations belonging to the atomic and
molecular physics groups at Durham and Newcastle
Universities and purchased with funds from the SERC
Computational Science Initiative.

References

[1] L. Hedberg and L.M. Mills, J. Mol. Spectrosc. 160 (1993)
117.

[2] J.E. Dennis, in: Nonlinear Optimisation 1981, M.J.D. Powell,
ed. (Academic Press, London, 1982).

[3] PR. Bevington, Data Reduction and Error Analysis for the
Physical Sciences (McGraw-Hill, London, 1969).

268 M.M. Law, JM. Hutson/Computer Physics Communications 102 (1997) 252-268

|4] PE. Gill, W. Murray and M.H. Wright, Practical
Optimization (Academic Press, London, 1981).

|S| LM. Mills, in: Recent Experimental and Computational
Advances in Molecular Spectroscopy, R. Fausto, ed.
(Kluwer, London, 1993).

|61 J. Tennyson, Comput. Phys. Rep. 4 (1986) 1.

|7] Z. Badi¢ and J.C. Light, Ann. Rev. Phys. Chem. 40 (1989)
469.

8] J. Tennyson, S. Miller and J.R. Henderson, in: Methods in
Computational Chemistry, Vol. 5, S. Wilson, ed. (Plenum,
New York, 1991).

[9] J.M. Hutson, Comput. Phys. Commun. 84 (1994) 1.

[t0] J.M. Hutson and S. Green, MOLSCAT computer program,
Version 14, distributed by Collaborative Computational
Project No. 6 of the UK Engineering and Physical Sciences
Research Council (1994).

[11] JM. Hutson, BOUND computer program, Version 35,
distributed by Collaborative Computational Project No. 6 of
the UK Engineering and Physical Sciences Research Council
(1993).

| 12] J. Tennyson, S. Miller and C.R. Le Sueur, Comput. Phys.
Commut. 75 (1993) 339.

| 13} J.R. Henderson, C.R. Le Sueur and J. Tennyson, Comput.
Phys. Commun. 75 (1993) 379.

[14] D.J. Nesbitt, M.S. Child and D.C. Clary, J. Chem. Phys. 90
(1989) 4855.

[15] T.S. Ho and H. Rabitz, J. Phys. Chem. 97 (1993) 13447,

[16] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T.
Vetterling, Numerical Recipes (Cambridge University Press,
Cambridge, 1986).

{17| D.L. Albritton, A.L. Schmeltekopf and R.N. Zare, Least-
squares fitting of spectroscopic data, in: Molecular
Spectroscopy: Modern Research, Vol. I, K.N. Rao, ed.
(Academic Press, London, 1976).

(18] MMM. Law, JM. Hutson and A. Ernesti, Fitting
Molecular Potential Energy Surfaces, ISBN 0-9522736-
0-8 Collaborative Computational Project No. 6 of the
UK Engineering and Physical Sciences Research Council,
Daresbury (1993).

[19] RJ. Le Roy and J.M. Hutson, J. Chem. Phys. 86 (1987)
837.

[20] J.M. Hutson, J. Chem. Phys. 96 (1992) 6752.

{21] J.M. Hutson, J. Phys. Chem. 96 (1992) 4237.

{22] S.C. Carter, LM. Mills and N.C. Handy, J. Chem. Phys. 99
(1993) 4379.

23] E.J. Bohac, M.D. Marshall and R.E. Miller, J. Chem. Phys.
97 (1992) 4890.

[24] J M. Hutson, A. Emesti, M.M. Law, C.F. Roche and R.J.
Wheatley, J. Chem. Phys. 105 (1996) 9130.

|25} M.-L. Dubernet and J.M. Hutson, J. Chem. Phys. 99 (1993)
7477.

|26] U. Schnupf, J.M. Bowman and M.C. Heaven, Chem. Phys.
Lett. 189 (1992) 487.

[27] R.C. Cohen and R.J. Saykally, J. Phys. Chem. 94 (1990)
7991.

[28] R.C. Cohen and R.J. Saykally, J. Chem. Phys. 98 (1993)
6007.

[29] C.A. Schmuttenmaer, R.C. Cohen and R.J. Saykally, J. Chem.
Phys. 101 (1994) 146.

[30] M. Quack and M. Suhm, J. Chem. Phys. 95 (1991) 28.

131] M.J. Elrod and RJ. Saykally, J. Chem. Phys. 103 (1995)
933,

[32] M.M. Law, J.L. Duncan and [.M. Mills, J. Mol. Struct. 260
(1992) 323.

[33] K. Rasmussen, S.B. Engelsen, J. Fabricius and B. Rasmussen,
in: Recent Experimental and Computational Advances in
Molecular Spectroscopy, R. Fausto, ed. (Kluwer, London,
1993). :

[34] S.B. Engelsen, J. Fabricius and K. Rasmussen, Comput. &
Chem. 18 (1994) 397.

[35] K. Levenberg, Quart. Appl. Math. 2 (1944) 164.

[36] D. Marquardt, SIAM J. Appl. Math. 11 (1963) 431.

[37] CL. Lawson and R.J. Hanson, Solving Least Squares
Problems (Prentice-Hall, New Jersey, 1974).

[38] J.E. Dennis, in: The State of the Art in Numerical Analysis,
D. Jacobs, ed. (Academic Press, London, 1977).

[39] A.F Krupnovand A.V. Burenin, in: Molecular Spectroscopy:
Modern Research, Vol. II, K.N. Rao, ed. (Academic Press,
London, 1976).

[40] R. Fletcher, Atomic Energy Research Establishment, Harwell
Report R6799 (1971).

[41] L.S. Bartell, D.J. Romenesko and T.C. Wong, in: Molecular
Structure by Diffraction Methods, Vol. 3, Specialist
Periodical Reports (The Chemical Society, London, 1975)
p. 72.

[42] Application Visualisation System computer code, Release
5.0, distributed by Advanced Visual Systems Inc., USA
(1993).

[43] Parallel Virtual Machine computer code, Version 3.1,
distributed by Oak Ridge National Laboratory, USA (1993).

[44]). Pruyne and M. Livny, J. Future Generations of Computer
Systems 12 (1996) 67.

[45] A. Carrington, C.A. Leach, AJ. Marr, AM. Shaw, MR.
Viant, JM. Hutson and M.M. Law, J. Chem. Phys. 102
(1995) 2379.

[46] A. Carrington, C.H. Pyne, A M. Shaw, S.M. Taylor, J.M.
Hutson and M.M. Law, J. Chem. Phys. 105 (1996) 8602.

[47] K.M. Atkins and J.M. Hutson, J. Chem. Phys. 105 (1996)
440.

{48] E. Anderson, Z. Bai, C. Bischof, JW. Demmell, J.J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, S. Ostrouchov and D. C. Sorenson, LAPACK
Users” Guide (SIAM, Philadephia, 1992).

[49] J.J. Dongarra, J. Du Croz, S. Hammarling and I. Duff, ACM
Trans. Math. Softw. 16 (1990) 1.

