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We report the results of a search for a W’/ boson produced in p p collisions at a center-of-mass energy
of 1.8 TeV using a 107 pb~! data sample recorded by the Collider Detector at Fermilab. We consider
the decay channel W' — uv,, and search for anomalous production of high transverse mass wv,, lepton
pairs. We observe no excess of events above background and set limits on the rate of W’ boson production
and decay relative to standard model W boson production and decay using a fit of the transverse mass
distribution observed. If we assume standard model strength couplings of the W’ boson to quark and
lepton pairs, we exclude a W' boson with invariant mass less than 660 GeV /c? at 95% confidence level.

PACS numbers. 14.70.Pw, 12.60.Cn, 13.85.Rm

Three of the four known forces of nature, the strong,  coveries of the W and Z° bosons, the carriers of the weak
electromagnetic, and weak forces, are described by the  force, and high precision measurements of their properties.
standard model using alocal gauge theory that accountsfor ~ The standard model is not a compl ete theory, however, asit
each interaction using a vector boson force carrier [1]. The  failsto explain the number of lepton and quark generations,
predictions of this model have been confirmed by the diss  the rather large mass scale between the very lightest and
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very heaviest of the fundamental fermions, and the number
or structure of the gauge symmetries that exist in nature.
It is still an open experimenta question as to whether ad-
ditional forces exist. Evidence for a new force could come
from observation of the corresponding force carrier.

Previous searches have been conducted for possible new
force carriersthat coupleto w final statesin amanner simi-
lar to the vector bosons that mediate the weak force. These
searches have yielded null results, and have set model-
dependent limits on the rate at which such a particle is
produced and its mass. The most sensitive searches have
been performed at the Fermilab Tevatron Collider. A Z’
boson with a mass <690 GeV/c? has been excluded at
95% confidence level (C.L.) [2]. Searches considering the
decay mode W' — uv, have excluded a W' boson with
mass <435 GeV/c? at 95% C.L. [3]. Thesemasslimitsall
assume that the new vector boson’s couplings to leptonic
final states will be given by the standard model, which
predicts that the total width of the boson increases linearly
with My, where My, is the mass of the boson. Indirect
searches studying, for example, the Michel spectrum in
u decay have resulted in more model-independent limits
with less sengitivity [4]. Searches in other channels have
also been used to place constraints on possible W’ masses:
The most stringent exclude a W’ boson at 95% C.L. with
amass <720 GeV/c? that decaysviaW’ — ev, [5].

In this Letter, we present the results of a new search
for a W’ boson in the uv, decay mode. We use a data
sample of 107 pb™~! of 1.8 TeV pp collisions recorded by
the Collider Detector at Fermilab (CDF) detector during
1992-1995. This search is based on an analysis of high
mass uv, candidate final states, and is sensitive to a va-
riety of new phenomena that would result in anomalous
production of such high mass events. We use these data to
set limits on the production cross section times branching
fraction of the process

pp— WX — pv,X, (1)

normalizing the candidate event sample to the large ob-
served W — v, signal in the same event sample. This
search assumes that the decay W/ — WZ° is suppressed
[6] and that M, < My, where M, is the mass of the
neutrino from a W' boson decay. We also assume that
the daughter neutrino does not decay within the detector
volume.

In this search, we select events that are consistent with
the production of both the standard model W boson, fol-
lowed by thedecay W — uv,, and any heavier object that
decays in the same manner. We place limits on the produc-
tion and decay rate of such a massive object relative to the
production and decay rate of the W boson. This approach
avoids the need to make an absol ute cross section measure-
ment or upper limit, and avoids many of the uncertainties
associated with such a technique. We subsequently use
our relative production and decay rate upper limits to set
lower limits on the mass of such a W' boson. However,
these upper limits place constraints on any processes that
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generate high mass uv, pairs, and represent an increase
of afactor of 20 in sensitivity from earlier searchesin this
channel. Additiona details of this analysis are presented
in Ref. [7].

The CDF detector is described in detail elsewhere
[8]. The detector has a charged particle tracking system
immersed in a 1.41 T solenoidal magnetic field, which
is coaxia with the p p beams. The tracking system con-
sists of solid state tracking detectors and drift chambers
that measure particle momentum with an accuracy of
op./pr ~ 0.001pr, where pr is the momentum of the
charged particle measured in GeV/c transverse to the
pp beam line. The tracking system is surrounded by
segmented electromagnetic and hadronic calorimeters
that measure the flow of energy associated with particles
that interact hadronically or electromagnetically out to a
pseudorapidity || of 4.2 [9]. A set of charged particle
detectors outside the calorimeter is used to identify muon
candidates with |n| < 1.0.

Candidate events were identified in the CDF trigger sys-
tem by the requirement of at least one muon candidate with
pr > 9 or 12 GeV/c, depending on running conditions.
The event sample was subsequently refined after full event
reconstruction by requiring a well-identified muon candi-
date with momentum pr > 20 GeV/c¢ and by requiring
that the missing transverse energy in the event, £, be
greater than 20 GeV.

Additional requirements were imposed to reject specific
sources of backgrounds. Events consistent with arising
from QCD dijet production, where one jet is misidentified
as a muon candidate, were rejected by requiring that the
muon candidate be isolated from energy flow in the event
and that the energy deposited in the calorimeter by the
muon candidate be consistent with that arising from amini-
mum ionizing particle. Eventsdueto Drell-Yan production
of dimuons (dominated by the decay Z° — u* u™) were
rejected by vetoing events if a second isolated muon can-
didate with p; > 15 GeV/c was found in the event. Fi-
nally, events arising from cosmic rays were rejected by
imposing tight requirements between the timing of the
beam interaction and the muon candidate passing through
the cal orimeter, and by removing events that had evidence
of a second charged particle observed within 0.05 rad of
being back-to-back with the u candidate.

Thisselection resulted in asample of 31992 events. The
distribution of the transverse mass

Mr = \2pr#r(l — cosp,,), 2

where ¢, isthe azimuthal angle between the u candidate
and the missing transverse energy vector, shows a clear
Jacobian peak that is associated with the production and
decay of the W boson. This distribution, illustrated in
Fig. 1, aso shows a smoothly falling distribution above
the Jacobian peak with little obvious structure.

In order to understand the composition of this high
transverse mass sample, we fit the My distribution be-
tween 40 and 2000 GeV/c? using an unbinned maximum
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FIG. 1. The transverse mass spectrum of the pv, candidate
events. The background rate is predicted from the fit described
in the text. The distribution expected from the production of
a W' boson with a mass of 650 GeV/c? is illustrated by the
dashed distribution.

likelihood technique, which included contributions from a
hypothetical W’ boson decaying to the wv, fina state,
W — uv, decay, and all other significant background
sources. The largest background sources were the pro-
duction and decay of the W and Z° bosons into final
states consisting of muons. These included the decay
modesW — uv,, W — tv, = pv,v,, Z2° > 7777 —
wX, and Z° — utu~. The other background sources
were muons arising from top quark production and “fake”
muons arising from QCD dijet production. The shape of
the M7 distributions for the W’ signal and the backgrounds
from W and Z° production were calculated using a Monte
Carlo technique employing the PYTHIA program [10]. We
used a next-to-leading order theoretical prediction for the
pr and i dependence of W/ and W production [11]. Our
model included a simulation of the CDF detector that was
derived from studies of Z° — u* u~ candidate events.
Studies of specific data samples constrained the size and
shape of the other possible background contributions. The
relative size of the various W and Z° boson decay modes
and ¢7 production were determined using the measured pro-
duction ratios and branching fractions to these final states

TABLE I.
Uncertainties are correlated.

[12]. The size of the dijet background was determined by
studying the characteristics of event samples enriched in
this dijet contamination. The total number of events with
My > 200 GeV/c? from standard model sources was es-
timated from the fit to the M distribution between 40 and
2000 GeV/c? to be 11.8 + 0.9 events, with the largest
contribution arising from off-mass-shell W boson produc-
tion. This agrees with the observed yield of 14 events in
this M7 region.

The results of the fit to the My data distribution assum-
ing only contributions from W production and decay and
the other known background sources are plotted in Fig. 1.
The agreement between the data distribution and the fit
prediction is good. A small excess of events with trans-
verse masses around 200 GeV/c? is not statistically sig-
nificant. The contributions from the various background
sources are listed in Table |.

Our Monte Carlo calculation together with the detector
model was used to determine the ratio of acceptances for
detection of W/ and W bosons. This ratio rises as a func-
tion of My, peaking at ~1.7 for My = 300 GeV/c?, and
then falling to ~1.5 for My = 800 GeV/c?. The initial
increase in acceptance is due to a heavier W' boson being
produced more centrally. The subsequent decrease results
from very high energy muon daughters depositing signifi-
cant amounts of energy in the calorimeter.

We set upper limits on the relative contribution of a W’
boson by fitting the data distribution to a combination of
the background distributions described above and a W' My
distribution expected from the production and decay of a
W' boson of agiven mass. The results of the fit, expressed
astheratio of observed W’ boson candidates to the number
expected assuming standard model strength couplings, are
shown in Table Il. We then used the resulting likelihood
function to set a 95% C.L. upper limit on this ratio, also
shown in Table Il. In setting these limits, we considered
only thelikelihood function in the “ physical region” where
this ratio was greater than or equal to zero. We note that
these limits are insensitive to the assumed width of the
W' boson, as the width of the expected signal distribution
is dominated by detector resolution for W' masses greater
than approximately 300 GeV /c?.

The procedure used to calculate this upper limit incor-
porated various systematic uncertainties using the method
given in [12]. The largest resulted from the choice of

The event yields for the background sources above and below M; = 200 GeV/c?.

Process Fitted Event Yield
(40 < My < 200 GeV/c?) (M7 > 200 GeV/c?)
W— uv, 27925 £ 209 8.99 = 0.81
W— 71y, 687 £ 27 0.04 £ 0.01
Z]y — pup 2824 * 196 2.02 * 0.35
Z/y —> 77 47 £ 3 0.02 = 0.02
1t 1444 0.291907
QCD 74 + 37 0421983
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TABLE Il. The expected number of events from W’ boson
production, Neyp, assuming standard model strength couplings
and normalized to the observed W boson yield. We also show
the rate of W’ boson production and decay relative to the rate
predicted using standard model couplings, and the 95% C.L.
upper limit on this relative rate as a function of My:. The
uncertainties are statistical and do not include the systematic
uncertainties. They are defined by requiring the log-likelihood
to change by one-half unit and are not 68% C.L. intervals. The
95% C.L. upper limit includes both statistical and systematic
uncertainties and have been determined as described in the text.

2 o BW —pr,)

My (GeV/c*)  Neyp (events) B

Fit Upper limit
200 2330 + 100 0.0097:004 0.08
250 984 * 45 0.01170:007 0.10
300 456 + 26 0.0067555¢ 0.10
350 224 + 13 0.0007 0050 0.09
400 115 + 8 0.00070958 0.11
450 60.2 + 3.5 0.00075:926 0.14
500 325 + 24 0.0007 503 0.20
550 172 = 1.4 0.00070:008 0.30
600 9.69 + 0.84  0.000°0:5%00 0.50
650 537 =050  0.00070500 0.83
700 3.01 =031 0.0005030% 1.60
750 172 £ 021  0.00070%0% 2.94

parton distribution function, which at the highest masses
contributed ~+10% uncertainty to the relative W and W’
production cross section. We used the CTEQ4AL1 par-
ton distribution functions with a four-momentum transfer
squared Q2 = M3, for our result [13] but employed sev-
eral parton distribution functions to determine our sensitiv-
ity to this choice. Other systematic uncertainties included
those arising from our knowledge of the track p7 resolu-
tion and the uncertainty in acceptance arising from varia-
tionsinthe W' boson pr distribution. The total systematic
uncertainty varied from 4% for My, = 200 GeV/c? to
12% for My, = 700 GeV/c>. These were incorporated
into our upper limits using a procedure that convoluted the
likelihood function determined by our fit to the M7 dis-
tribution with the probability distribution functions asso-
ciated with each uncertainty. The results are dominated
by the statistical uncertainties of the data sample. We
also computed cross section upper limits by counting sig-
nal events above background in the high transverse mass
region and obtained comparable results to the likelihood
fit, though these depended on the region chosen for signa
events.

We can convert the 95% C.L. upper limit on the relative
cross sections and decay rates into a lower limit on the
mass of the W’ boson by excluding all masses where our
95% C.L. limit on the ratio of cross sections times branch-
ing fractions is less than unity. We determined the pre-
dicted cross sections using a parton-level matrix element
calculation and the CTEQ4A1 parton distribution func-
tions, taking into account the fact that a W' boson with a
mass above approximately 180 GeV /c? decays into three
quark generations.
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FIG. 2. The upper limits on the W’ boson production cross
section as a function of the W/ boson mass.

The resulting upper limit on the W' boson cross sec-
tion versus My, is shown in Fig. 2, where we have now
normalized our upper limits on the production cross sec-
tion ratios using the predicted W boson production cross
section, which is consistent with measurements [14]. We
compare this upper limit with the predictions for a W' bo-
son with standard model strength couplings, aso shown in
thefigure. Thisallows usto exclude a W’ boson with mass
between 200 and 660 GeV/c?. Taking into account the
previous searchesin thischannel, a W’ boson with standard
model strength couplings and mass below 660 GeV /c? can
be excluded. This corresponds to an increase in sensitivity
of approximately a factor of 20 from the earlier studies of
this final state.

In summary, we have performed a search for the pro-
duction of a new heavy vector gauge boson in 1.8 TeV
pp collisions and decaying into the wv, final state. We
use a fit of the M, distribution to exclude a W’ boson
with mass <660 GeV/c* a 95% C.L., assuming stan-
dard model strength couplings. Thislimit is comparableto
those set using the ev, decay modes, and represents a sig-
nificant improvement in sensitivity for W’ boson searches
using the muon decay mode.
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