
n
Pro Fortra

Linux
Fortran User Guide

 Pro Fortran

Linux
Fortran User Guide

2781 Bond Street
Rochester Hills, MI 48309
U.S.A.
Tel (248) 853-0095
Fax (248) 853-0108
support@absoft.com

All rights reserved. No part of this publication may be reproduced or used in any form by any means, without the
prior written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE
AND RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF
WARRANTIES WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO
REVISE THE PROGRAM MATERIAL AND MAKE CHANGES THEREIN FROM TIME TO TIME
WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION OR CHANGES. IN
NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM
MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
252.227-7013. The contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE
SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO
YOU. Absoft and its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of
the form of the action (whether in contract, tort, (including negligence), product liability or otherwise), will be
limited to $50.

Absoft, the Absoft logo, Fx, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, and HyperCard are registered trademarks of Apple Computer, Inc.
CF90 is a trademark of Cray Research, Inc.
IBM, MVS, and RS/6000 are trademarks of IBM Corp.
Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MetroWerks and CodeWarrior are trademarks of MetroWerks, Inc.
MS-DOS is a trademark of Microsoft Corp.
Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.
PowerPC is a trademark of IBM Corp., used under license.
Sun and SPARC are trademarks of Sun Microsystems Computer Corp.
UNIX is a trademark of the Santa Cruz Operation, Inc.
VAX and VMS are trademarks of Digital Equipment Corp.
Windows NT, Windows 95, Windows 98, Windows 3.1, and Win32s are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 1991-2001 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America. 8.0073102

Table of Contents i

Fortran User Guide

Fortran User Guide

Contents

CHAPTER 1 INTRODUCTION ... 1

Introduction to Absoft Pro Fortran...1
Absoft Fortran 90/95 ..1
Absoft FORTRAN 77 ..1

Conventions Used in this Manual ..2

Road Maps ...2
Fortran Road Maps...2

Year 2000 Problem..3
Fortran 90/95 DATE_AND_TIME Subroutine..4
Unix Compatibility Library ..4

CHAPTER 2 USING THE COMPILERS ... 5

Compiling Programs...5

File Name Conventions ...5

Compiler Process Control ..6
Generate Assembly Language (-S)...6
Generate Relocatable Object (-c) ...6
Passing Options To The Linker..7

Executable File Name (-o name)..7
Library Specification (-l) ...7
Library Path Specification (-L)..7
Undefine A Symbol (-u) ..7
Linker Options (-X) ...7

Generate Debugging Information (-g)..7
Enable Exception Traceback (-et) ..8
g77 Compatibility (-g77)..8

FPU Control Options ..8
FPU Rounding Mode..8
FPU Exception Handling..9

X86 Processor Specific Options ...9
CPU Specific Optimizations (-cpu:type)...9
No Register Variables (+B41) ...10
Don't change FPU control word (-B23) ...10
Preserve FPU control word (-B24) ..10
Verify FPU Stack (-B111) ...10

PowerPC Processor Specific Options ..10
Don’t generate FMA instructions (+B51) ..10
Use long branches (-B18) ..11

ii Table of Contents

Fortran User Guide

Absoft Fortran 90/95 Options.. 11
Compiler control .. 11

Show progress (-v) .. 11
Output Version number (-V) ... 11
Suppress warnings (-w)... 11
Warn of non-standard usage (-en) .. 12
Warning level (-mnn) ... 12
Suppress Warning number(s) (-Mnn) ... 12
Stop on error (-ea) .. 12
Allow greater than 100 errors (-dq) .. 12
Default Recursion (-eR) ... 12
Append Underscore To Names (-B108)... 13
Disable Stack Alignment (-B112) .. 13
Procedure Trace (-B80) .. 13
Assume Pointer Aliases Exist (-B19) ... 13
Generate Debugging Information (-g) .. 13
Generate Profiler Information (-P) ... 14

Optimizations... 14
Basic Optimizations (-O1) .. 14
Normal Optimizations (-O2)... 14
Advanced Optimizations (-O3) .. 14

Compatibility ... 15
Source Formats ... 15

Free-Form (-f free)... 15
Fixed-Form (-f fixed) ... 15
Alternate Fixed form (-f alt_fixed) .. 15
Fixed line length (-W nn) .. 15

Escape Sequences in Strings (-YCSLASH=1) ... 16
No Dot for Percent (-YNDFP=1) ... 16
MS Fortran 77 Directives (-YMS7D) ... 16
DVF/CVF Compatible CHARACTER arguments (-YVF_CHAR) ... 16
Integer Sizes (-i2 and -i8) ... 16
Demote Double Precision to Real (-dp).. 17
Promote REAL to REAL(KIND=8) (-N113)... 17
One trip DO loops (-ej)... 17
Static storage (-s) .. 17
Disable compiler directive (-xdirective) .. 17
Max Internal Handle (-T nn) .. 18
Temporary string size (-t nn) .. 18
Module File Path(s) (-p path)... 18
Check Array Boundaries (-Rb)... 18
Check Array Conformance (-Rc) ... 18
Check Substrings (-Rs)... 19
Check Pointers (-Rp) .. 19
Character Argument Parameters (-YCFRL={0|1})... 19
External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS}) 19
External Symbol Prefix (-YEXT_PFX=string).. 19
External Symbol Suffix (-YEXT_SFX=string) ... 19
COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS}) 19
COMMON Block Name Prefix (-YCOM_PFX=string) ... 19
COMMON Block Name Suffix (-YCOM_SFX=string) ... 20
Cache Control (-YDEALLOC= {MINE | ALL | CACHE}).. 20
Pointers Equivalent to Integers (-YPEI={0|1})... 20

Absoft Fortran 90/95 Compiler Directives .. 20
NAME Directive... 21
FREE[FORM] Directive ... 21
FIXED Directive... 22

Table of Contents iii

Fortran User Guide

NOFREEFROM Directive...22
FIXEDFORMLINESIZE Directive...22
ATTRIBUTES Directive ...22
PACK[ON] Directive ..23
PACKOFF Directive ...23
STACK Directive ..23

Absoft Fortran 77 Options ...23
Compiler control...23

Show progress (-v)...24
Quiet Compilation (-q) ..24
Suppress warnings (-w) ...24
Suppress alignment warnings (-A)...24
Warn of non-ANSI usage (-N32) ..24
Check Syntax Only (-N52)..24
Append Underscore To Names (-B108) ...24
Character Argument Parameters (-N90)..24
Disable Stack Alignment (-B112) ...25
BLOCK DATA Code Section (-N116)...25
Procedure Trace (-B80)...25
Assume Pointer Aliases Exist (-B19) ..25
Check array boundaries (-C) ...25
Generate Debugging Information (-g) ...25
Info for unused structures (-N111) ...26
Generate Profiler Information (-P) ..26
Conditional compilation (-x) ...26
Max Internal Handle (-T nn) ...26
Define Compiler Directive (-Dname[=value])...26
Set Include Paths (-I) ...27

Optimizations ...27
Basic Optimizations (-O1)...27
Advanced Optimizations (-O2) ...27
DATA treated as constants (-N5) ..28
Function decomposition (-N18) ..28
Evaluate Constant Functions (-N41) ...28
Loop unrolling (-U and -h nn and -H nn)...28
Optimize Address Expressions (-N86)..29

Compatibility..29
Folding to lower case (-f)...30
Folding to upper case (-N109) ..30
Static storage (-s)...30
Use record lengths in I/O (-N3)...30
RECL Defines 32-bit words (-N51) ..30
One-trip DO loops (-d) ..31
Integer Sizes (-i2 and -i8) ..31
Zero extend INTEGER*1 (-N102) ...31
Set Big-Endian (-N26) ..31
Set Little-Endian (-N27)..31
Set COMMON block name (-N22) ...31
Evaluate left-to-right (-N20) ...31
Double precision transcendentals (-N2) ..32
Maintain Floating Point Precision (-e) ..32
Sign extend BYTE() & WORD() (-N7) ..32
DATA variables are static (-N1) ...32
Promote REAL and COMPLEX (-N113) ...32
Escape sequences in strings (-K) ...33
Allows CASE without DEFAULT (-N4) ..33

iv Table of Contents

Fortran User Guide

Allows UNIT= without FMT= (-N16) ... 33
Pack STRUCTURE elements (-N33) ... 33
Align STRUCTURE fields to one byte boundaries (-N56) .. 33
Align STRUCTURE fields to two byte boundaries (-N57).. 33
Align STRUCTURE fields to four byte boundaries (-N58) ... 34
Align STRUCTURE fields to eight byte boundaries (-N59).. 34
Align COMMON variables (-N34) .. 34
Temporary string size (-t nn) .. 34
Warnings for Undeclared Variables (-N114) ... 34
Pad Source Lines (-N115) .. 34
Source Formats ... 35

Fortran 90/95 Free-Form (-8)... 35
IBM VS Free Form (-N112) .. 35
VAX Tab-Format (-V) ... 35
Wide format (-W)... 35

CHAPTER 3 PORTING CODE ... 37

Porting Code from VAX .. 37
Compile Time Options and Issues ... 38
Runtime Issues... 39

Porting Code from IBM VS FORTRAN .. 39
Compile-time Options and Issues .. 40
Run-time Issues ... 40

Porting Code From Microsoft FORTRAN (PC version) .. 40
Compile-time Options and Issues .. 41

Porting Code from Sun Workstations .. 42

Porting Code from Intel 386/486/Pentium Computers ... 42

Porting Code From Macintosh Systems ... 43
Language Systems Fortran... 43
Other Absoft Macintosh Compilers ... 43

Distribution Issues .. 43

Other Porting Issues... 44
Memory Management.. 44

Dynamic Storage... 44
Static Storage .. 45

Naming Conventions ... 45
Procedure Names .. 45
COMMON Block Names.. 46

File and Path Names .. 46
Tab Character Size... 46
Runtime Environment.. 46
Floating Point Math Control .. 48

Rounding Direction... 49
Exception Handling .. 49

Fsplit - Source Code Splitting Utility .. 49

Table of Contents v

Fortran User Guide

CHAPTER 4 INTERFACING WITH OTHER LANGUAGES 51

Interfacing with C ...51
Fortran Data Types in C ...52
Required Compiler Options..52
Rules for Linking..53
Passing Parameters Between C and Fortran ...53

Reference parameters...53
Value parameters ...54
Array Parameters ...56
Function Results ..56
Passing Strings to C...57

Calling Fortran math routines...58
Naming Conventions ..58

Procedure Names ...59
Accessing COMMON blocks from C ..59
Declaring C Structures in Absoft Pro Fortran ..59

Interfacing with Assembly Language..60
The Fortran Stack Frame ..60
Function Results ...61

Debugging ..61
Compiler Options ...61

Profiling..61
Compiler Options ...61

APPENDIX A ABSOFT COMPILER OPTION GUIDE 63

Absoft Pro Fortran Compiler Options ..63

FPU Control Options ..64

X86 Processor SPecific Options ...64

PowerPC Processor Specific Options ..64

Fortran 90/95 Control Options ..64

Fortran 90/95 Optimization Options ...65

Fortran 90/95 Source Format Options ..65

Fortran 90/95 Compatibility Options..66

FORTRAN 77 Control Options ...67

FORTRAN 77 Optimization Options ..68

FORTRAN 77 Source Format Options...68

FORTRAN 77 Compatibility Options...69

vi Table of Contents

Fortran User Guide

APPENDIX B ASCII TABLE... 71

APPENDIX C BIBLIOGRAPHY ... 75

Fortran 90/95 .. 75

FORTRAN 77 ... 75

APPENDIX D TECHNICAL SUPPORT .. 77

CHAPTER 1

Introduction

INTRODUCTION TO ABSOFT PRO FORTRAN

Absoft specializes in the development of Fortran compilers and related tools. Full
implementations of Fortran 77 and Fortran 90/95 are available for Macintosh, Windows,
and Linux platforms. Absoft will continue to focus on Fortran in the future, but the
popularity of C/C++ in the Unix environment has required many of today's Fortran
programmers who are moving code to their desktop, to link Fortran code with C libraries.
Absoft compilers support most popular inter-language calling conventions implemented
on Linux systems, providing compatibility with existing libraries and object files,
simplifying porting efforts.

This User Guide explains the operation of Absoft Fortran 90/95, Absoft FORTRAN 77,
and the Fx™ debugger on the Linux operating system for the x86 and PowerPC families
of processors. In the event you have licensed only one of these compilers, please refer
only to the appropriate section(s) and disregard the others. All compilers operate in a
similar manner, share a common tool set, and are link compatible. A brief summary of
each compiler appears below.

Absoft Fortran 90/95

A complete, optimizing ANSI Fortran 90/95 implementation with extensions. Absoft
Fortran 90/95 is the result of a five-year joint development effort with Cray Research. It
utilizes a version of the CF90 front-end and is source compatible with several Cray F90
releases. It provides full support for interfacing with FORTRAN 77 and C Programming
Language libraries.

Absoft FORTRAN 77

Refined over 16 years, with emphasis on porting legacy code from workstations. Absoft
Fortran 77 is full ANSI 77 incorporating MIL-STD-1753, Cray-style POINTERs, plus
most extensions from VAX FORTRAN as well as many from IBM, Sun, HP, and Cray.
Absoft Fortran 77 supports legacy extensions that are not part of the Fortran 90/95
standard. See the chapter on Porting Code in this manual for further information. Fortran
77 is fully link compatible with Fortran 90/95 and C/C++ so existing, extended
FORTRAN 77 routines can be easily compiled and linked with new Fortran 90/95 or
C/C++ code.

2 Introduction

Fortran User Guide

CONVENTIONS USED IN THIS MANUAL

There are a few typographic and syntactic conventions used throughout this manual for
clarity.

• [] square brackets indicate that a syntactic item is optional.

• … indicates a repetition of a syntactic element.

• Term definitions are underlined.

• -option font indicates a compiler option.

• Italics are used for emphasis and book titles.

• Unless otherwise indicated, all numbers are in decimal form.

• FORTRAN examples appear in the following form:

PROGRAM SAMPLE
WRITE (9,*) "Hello World!"
END

ROAD MAPS

Although this manual contains all the information needed to build programs with Absoft
Pro Fortran on Linux, there are a number of other manuals that describe Fortran 90/95
and FORTRAN 77 in further detail. The road map in this chapter will guide you to these
manuals for introductory or advanced reference. The bibliography in appendices lists
further information about each manual.

Fortran Road Maps

The Absoft implementation of Fortran 90/95 is detailed in the online manual, Fortran 90
Concise Reference, in the Documentation directory of the Pro Fortran CDROM.
FORTRAN 77 is detailed in the online manual, FORTRAN 77 Language Reference
Manual, also in the Documentation directory of the Pro Fortran CDROM. A discussion
of floating point precision is at the end of the chapter Porting Code. Figures 1-1 shows
additional manuals that can be used for referencing the FORTRAN language and internal
math operations.

Introduction 3

Fortran User Guide

ANSI C Standard
ANSI X3.159-1989

Annotated C++ Reference Manual
Ellis and Stroustrup

ANSI FORTRAN 77 Standard
ANSI X3.9-1978

ANSI Fortran 90 Standard
ANSI X3.198-1992

Absoft Fortran 90
Concise Reference

Absoft FORTRAN 77
Language Reference Manual

IEEE Floating Point Standard
P754

Absoft Pro Fortran User Guide

FORTRAN 77 language road map
Figure 1-1

YEAR 2000 PROBLEM

All versions of Absoft Pro Fortran products for Macintosh, Power Macintosh, Windows
95/98, Windows NT, Linux, and UNIX will operate correctly across the date transition to
the year 2000. Neither the compilers nor the runtime libraries have ever used 2-digit
years in their internal operation. This means the version of Absoft Pro Fortran that you
already have will continue to operate correctly. No patches or version updates are
required.

The only caveat may be for those porting code from VAX/VMS systems. Since the early
1980s, Absoft Pro Fortran products have included software libraries designed to facilitate
porting code from the VAX/VMS environment. Included in these VAX compatibility
libraries are two subroutines that emulate the VAX/VMS DATE and IDATE subroutines.
These subroutines return the year using a two-digit format. If you use DATE or IDATE
in a program that stores or compares dates, you may need to recode portions of your
application. Below are listed some of the alternatives supplied with Pro Fortran:

4 Introduction

Fortran User Guide

Fortran 90/95 DATE_AND_TIME Subroutine

This subroutine is part of the Fortran 90/95 language and returns integer data from the
date and real time clock. Refer to the Fortran 90 Concise Reference for further
information.

Unix Compatibility Library

There are a number of subroutines in the Unix Compatibility Library that return the date
and time in both INTEGER and CHARACTER format. Refer to the manual Absoft
Compatibility Libraries for information on their format and use.

CHAPTER 2

Using the Compilers

This chapter describes how to use the Absoft Fortran 90/95 and FORTRAN 77 compilers
to create executable files on the Linux operating system for the Intel, AMD, and
PowerPC families of processors. Beginning with an overview of the compilers, this
chapter explains how to compile a small number of Fortran source files into an
executable application. File name conventions and process control options are described
first. The final sections of this chapter describe the compiler options in detail.

COMPILING PROGRAMS

The Fortran 90/95 and the FORTRAN 77 compilers are invoked from the Linux
command line in the same manner:

f95 [options] files…

f77 [options] files…

FILE NAME CONVENTIONS

Compilation is controlled by the two compiler drivers: f77 and f95. These drivers take a
collection of files and, by default, produce an executable output file. Acceptable inputs to
f95 are:

File Type Default form
Free format Fortran 90/95 source files file.f90 or file.f95

Free format Fortran 90/95 preprocessor files file.F90 or file.F95

Fixed format Fortran 90/95 source files file.f

Fixed format Fortran 90/95 preprocessor files file.F

C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

Acceptable inputs to f77 are:

File Type Default form
FORTRAN 77 source files file.f or file.for

FORTRAN 77 preprocessor files file.F or file.FOR

C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

6 Using the Compilers

Fortran User Guide

File names that do not have one of these default forms are passed to the linker. It is
assumed that the C compiler (cc), assembler (as), and linker (ld) are installed on the
system and use standard command line syntax.

Output file names take the form:

File Type Default form
Assembly language source files file.s

Relocatable object files file.o

Precompiled module file file.mod

Executable object files a.out

COMPILER PROCESS CONTROL

By default the f77 and f95 compiler drivers construct and execute the necessary
commands to produce an executable application. This process requires compilation,
assembly and linkage. As each of these processes finishes, all files that were created by
the preceding stage are deleted. In some cases it may be desirable to save these
intermediate files. Options controlling this are described here. These switches, in
conjunction with the input file names, can also be used to stop the compilation process at
any stage.

Generate Assembly Language (-S)

Specifying the –S option will cause the compilers to generate assembly language output
in a form suitable for the system assembler. The file created will have the suffix “.s”.
For example, compiling test.f with the –S option will create test.s. If any C source
files are given as arguments to f77 or f95, this option will be passed to the C compiler. If
no other compiler process control options are specified and there are no relocatable
object files specified on the command line, the compilation process will halt after all
Fortran 90/95, FORTRAN 77, and any C source code files have been compiled to
assembly language source.

Generate Relocatable Object (-c)

Specifying the –c option will cause the compilers to generate relocatable object files. In
the Linux environment, this option indicates that all source files (Fortran 90/95,
FORTRAN 77, C, and assembly) should be processed to relocatable object files. If no
linker options are present (see below), then the compilation process stops after all object
files have been created. If any C source files are given as arguments to f77 or f95, this
option will be passed to the C compiler.

Using the Compilers 7

Fortran User Guide

Passing Options To The Linker

For ease of use within the Linux environment, many of the options that are available to
the system linker are also available to the f77 and f95 compiler drivers. Specifying any
of these options indicates that all files specified on the command line should be processed
through the linkage phase. Unless the –S or –c options are specified, all intermediate files
(relocatable objects and/or assembly source) will be deleted. See the system
documentation on ld for more information regarding these options. In brief, the options
are as follows:

Executable File Name (-o name)

Use of the –o name option will cause the linker to produce an executable file called
name. The default is to produce an executable file called a.out.

Library Specification (-l)

Specifying the –lname option will cause the linker to search the library file libname.a.

Library Path Specification (-L)

The –Lpath option will cause the linker to search the specified directory named in path
for library files given with succeeding –l options.

Undefine A Symbol (-u)

Specifying the –usymbol_name option will enter symbol_name as an undefined symbol to
the linker.

Linker Options (-X)

Use the –Xoption switch to pass an option directly to the linker. The FORTRAN 77 or
Fortran 90/95 driver will pass option to the linker. If you want to pass an options which
takes an argument, use the –X option twice.

Generate Debugging Information (-g)

Specifying the –g option will cause the compilers to include symbol and line information
appropriate for debugging a compiled program with Fx, the Absoft debugger.

The Absoft Fortran 90/95 and FORTRAN 77 compilers have the capability to output
special symbol information for use with the Fx debugger from Absoft. This information
allows Fx to display the contents of adjustable arrays, arrays with more than four
dimensions, arrays with lower bounds other than 1, and arrays with dimensions greater
than 32767.

8 Using the Compilers

Fortran User Guide

Enable Exception Traceback (-et)

The –et option causes the compilers to include symbol and line information, exception
handling initialization, and library to code to perform execution tracebacks. The
traceback includes file name and line number of the program units in the call tree to the
point of the exception. There is no program execution time overhead when enabling this
option, but all files that are incorporated in the executable must be compiled with this
option for the diagnostic output to be meaningful.

g77 Compatibility (-g77)

Use the –g77 option to enable compiler switches that produce g77 compatible object
code. These options are:

f90 f77
-YEST_NAMES=LCS -f
-s -s
-YCFRL=1 -N90
-B108 -B108

This option is useful when linking against libraries built with g77.

FPU CONTROL OPTIONS

These options provide control over several aspects of the operation of the Floating-Point
Unit of the processor including rounding mode, exception handling, control word state,
and FPU stack integrity.

FPU Rounding Mode

The FPU rounding method is controlled with the –round option:

 –round=mode

where mode is one of:

NEAREST
DOWN
UP
TOZERO

This option implicitly enables the Preserve FPU control word (-B24) floating-point control
word option (see below).

Using the Compilers 9

Fortran User Guide

FPU Exception Handling

When a floating-point exception is produced, the default action of an application is to
supply an IEEE P754 defined value and continue. For undefined or illegal operations
(such as divide by zero or square root of a negative number) this value will usually be
either Infinity (INF) or Not A Number (NaN) depending on the floating-point operation.

Checking any of the exception boxes will cause the program to stop and produce a core
dump, rather than continue, if the exception is encountered. If the program is being
debugged, it will stop in the debugger at the statement line that caused the exception. The
syntax for using this option on the command line is:

-trap=exception[,exception,…]

where exception is one or more of:

INVALID
DIVBYZERO
OVERFLOW
UNDERFLOW
INEXACT
ALL

This option implicitly enables the Preserve FPU control word (-B24) floating-point control
word option (see below).

X86 PROCESSOR SPECIFIC OPTIONS

The options described in this section are specific to the x86 family of processors.

CPU Specific Optimizations (-cpu:type)

Use the –cpu:type option to generate instructions specific to a particular processor. The
recognized type arguments are:

486 non-Pentium Intel processor
p5 Pentium
p6 Pentium Pro, Pentium II, and Pentium III
p7 Pentium 4
athlon AMD Athlon and Duron
host automatically establishes type based on the processor in the machine

that the program is compiled with. If the CPU type cannot be
determined, p5 is assumed.

10 Using the Compilers

Fortran User Guide

No Register Variables (+B41)

If optimization is enabled, some REAL*4 variables may be assigned to registers and
maintained there in double precision. This extra precision may cause problems in some
numerically sensitive programs. To overcome this, add the +B41 option after the
optimization option to prevent the assignment of floating point variables to registers.

Don't change FPU control word (-B23)

If your code requires that the compiler not generate any instructions to manipulate the
FPU control word on Intel and AMD processors, select the -B23 option. Refer to the -B24
option (Preserve FPU control word) described next for details.

Preserve FPU control word (-B24)

In order to insure correct floating point to integer conversions on Intel and AMD
hardware, the compiler generates instructions to set the rounding mode to truncate before
generating code for these conversions. It does not, however, preserve any pre-existing
state of the FPU control word. If your code requires preserving the state of the FPU
control word (perhaps after setting it to some application specific state), use the -B24
option to direct the compiler to save and restore its state around floating point to integer
conversions. Note that this is an Intel and AMD specific option.

Verify FPU Stack (-B111)

The –B111 option directs the compiler to generate special code to verify the contents of
the Intel or AMD FPU after each subroutine and function reference. This option is useful
for tracking down mistyped functions and functions that are incorrectly referenced in
subroutine CALL statements.

POWERPC PROCESSOR SPECIFIC OPTIONS

The options described in this section are specific to the PowerPC family of processors.

Don’t generate FMA instructions (+B51)

Use of the +B51 option will cause the compiler not to use floating-point multiply-add
type of instructions. Since there is no rounding performed between the multiplication and
addition during the execution of these instructions, numeric results will vary depending
on where they are used.

Using the Compilers 11

Fortran User Guide

Use long branches (-B18)

The program counter relative branch instructions of the PowerPC microprocessor are
limited to signed 16-bit offsets. By default, the Absoft compilers issue these single
instruction branches within program units. In some instances of large source files, the
range of this branch instruction may be exceeded, resulting in an error diagnostic being
issued by the assembler.

The -B18 compiler option should be used to overcome the limitation. This option should
only be used when the assembler issues diagnostics as it will cause more code to be
generated than is usually necessary.

ABSOFT FORTRAN 90/95 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of Fortran 90/95 programs. The options fall into five general
categories: Compiler Control, Optimizations, Compatibility, Modules paths and file, and
Miscellaneous.

Each option is listed with the corresponding option letter(s) and a description. Options
that take arguments may optionally have a space to separate the option from its argument.
The only exceptions are the B and N options; they cannot have a space between the option
and its argument (e.g. -N33).

Many of these options are also discussed in the Absoft Fortran 90 Concise Reference on
your CD-ROM. Refer to Chapter 12, A Fortran 90 Implementation.

Compiler control

These options control various aspects of the compilation process such as warning level,
verbosity, code generation, where module files can be found, and the definition of
compiler directive variables. The generation of debugging information, for the symbolic
source-level debugger, Fx, is also controlled by compiler control options.

Show progress (-v)

Enabling the -v option will cause the f95 command, described above, to display the
commands it is sending to the compiler, assembler, and linker.

Output Version number (-V)

The -V option will cause the f95 compiler to display its version number. This option may
be used with or without other arguments.

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code will generate
a warning message. Error diagnostics will still be displayed on standard error.

12 Using the Compilers

Fortran User Guide

Warn of non-standard usage (-en)

Use of the -en option will cause the compiler to issue a warning whenever the source
code contains an extension to the Fortran 90/95 standard. This option is useful for
developing code that must be portable to other environments.

Warning level (-mnn)

Use the -mnn option to suppress messages by message level, where nn is a message level.
Diagnostics issued at the various levels are:

0 errors, warnings, cautions, notes, comments
1 errors, warnings, cautions, notes
2 errors, warnings, cautions
3 errors, warnings
4 errors

The default level is -m3; the compiler will issue error and warning diagnostics, but not
cautions, notes, and comments. See also the -Mnn option.

Suppress Warning number(s) (-Mnn)

Use the -Mnn option to suppress messages by message number, where nn is a message
number. This option is useful if the source code generates a large number of messages
with the same message number, but you still want to see other messages. See also the
-mnn option.

Stop on error (-ea)

The -ea option will cause the f95 compiler to abort the compilation process on the first
error that it encounters.

Allow greater than 100 errors (-dq)

Normally, the Absoft Fortran 90/95 compiler will stop if more than 100 errors are
encountered. This many errors usually indicate a problem with the source file itself or the
inability to locate an INCLUDE file. If you want the compiler to continue in this
circumstance, select the -dq option.

Default Recursion (-eR)

If you select the -eR option, all FUNCTIONs and SUBROUTINEs are given the RECURSIVE
attribute. Normally, if the compiler detects a recursive invocation of a procedure not
explicitly given the RECURSIVE attribute, a diagnostic message will be issued. The -eR
option disables this.

Using the Compilers 13

Fortran User Guide

Append Underscore To Names (-B108)

Use of the –B108 option directs the compiler to append an underscore to SUBROUTINE and
FUNCTION definitions and references. This option can be used to avoid name conflicts
with the system libraries or other Fortran environments.

Disable Stack Alignment (-B112)

Use the –B112 option to prevent the compiler from aligning the stack to a optimal
sixteen-byte boundary at the start of a main program. Use of this option is likely to cause
a compiled program to run slower.

Procedure Trace (-B80)

Specifying the -B80 option will cause the compiler to generate code to write the name of
the currently executing procedure to standard out. This option is useful for tracing
program execution and quickly isolating execution problems.

Assume Pointer Aliases Exist (-B19)

The -B19 option is selected when more than one symbolic name is used to reference a
variable’s memory location. This can occur when pointers are used, when variables in
COMMON are also passed as arguments, or when two dummy arguments are the same
actual argument.

Note: Standard FORTRAN should not require this option, but the use of extensions may
dictate its use. Performance loss should be expected when this option is selected.

Generate Debugging Information (-g)

Specifying the –g option will cause the compilers to include symbol and line information
appropriate for debugging a compiled program with Fx, the Absoft debugger.

The Absoft Fortran 90/95 and FORTRAN 77 compilers have the capability to output
special symbol information for use with the Fx debugger from Absoft. This information
allows Fx to display the contents of adjustable arrays, arrays with more than four
dimensions, arrays with lower bounds other than 1, and arrays with dimensions greater
than 32767.

14 Using the Compilers

Fortran User Guide

Generate Profiler Information (-P)

Specifying the –P option will place information for profiling execution into a compiled
program. For information on using the Linux profiler, see the Linux manual page for
gprof.

Optimizations

These options control compile time optimizations to generate an application with code
that executes more quickly. Absoft Fortran 90/95 is a globally optimizing compiler, so
various optimizers can be turned on which affect single statements, groups of statements
or entire programs. There are pros and cons when choosing optimizations; the application
will execute much faster after compilation but the compilation speed itself will be slow.
Some of the optimizations described below will benefit almost any Fortran code, while
others should only be applied to specific situations.

Basic Optimizations (-O1)

The –O1 option will cause most code to run faster and enables optimizations that do not
rearrange your program. The optimizations include common subexpression elimination,
constant propagation, and branch straightening. This option is generally usable with
debugging options. –cpu:host is implied with this option.

Normal Optimizations (-O2)

The –O2 option enables normal optimizers that can substantially rearrange the code
generated for a program. The optimizations include strength reduction, loop invariant
removal, code hoisting, and loop closure. This option is not usable with debugging
options. –cpu:host is implied with this option.

Advanced Optimizations (-O3)

The –O3 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. The optimizations include loop permutation (loop
reordering), loop tiling (improved cache performance), loop skewing, loop reversal,
unimodular transformations, forward substitution, and expression simplification. This
option is not usable with debugging options. –cpu:host is implied with this option.

Using the Compilers 15

Fortran User Guide

Compatibility

These options allow Absoft Fortran 90/95 to accept older or variant extensions of Fortran
source code from other computers such as mainframes. Many of these can be used for
increased compatibility with Fortran compilers on various mainframe computers.

Source Formats

For compatibility with other Fortran environments and to provide more flexibility, the
compiler can be directed to accept source code that has been written in a number of
different formats. The two basic formats are free-form and fixed-form.

Free-Form (-f free)

The -f free option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Free Source Form. This is the default for file names with an extension
of “.f90” or “.f95”.

Fixed-Form (-f fixed)

The -f fixed option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Fixed Source Form that is the same as the standard FORTRAN 77
source form.

Alternate Fixed form (-f alt_fixed)

The -f alt_fixed option instructs the compiler to accept source code written in following
form:

If a tab appears in columns 1 through 5, then the compiler examines the next character. If
the next character is not a letter (a-z, or A-Z) then it is considered a continuation
character and normal rules apply. If it is a zero, a blank, another tab, or a letter, the line is
not a continuation line.

Fixed line length (-W nn)

Use the -W option to set the line length of source statements accepted by the compiler in
Fixed-Form source format. The default value of nn is 72. The other legal values for nn
are 80 and 132 — any other value produces an error diagnostic.

16 Using the Compilers

Fortran User Guide

Escape Sequences in Strings (-YCSLASH=1)

If the -YCSLASH=1 option is turned on, the compiler will transform the following escape
sequences marked with a ‘\’ embedded in character constants:

\a Audible Alarm (BEL, ASCII 07)
\b Backspace (BS, ASCII 8)
\f Form Feed (FF, ASCII 12)
\n Newline (LF, ASCII 10)
\r Carriage Return (CR, ASCII 13)
\t Horizontal Tab (HT, ASCII 09)
\v Vertical Tab (VT, ASCII 11)
\xh[h] Hexadecimal, up to 2 digits
\o[o[o]] Octal number, up to 3 digits
\\ Backslash

No Dot for Percent (-YNDFP=1)

This option instructs the compiler to disallow the use of a ‘.’ (period) as a structure field
component dereference operator. The default is to allow both ‘%’ (percent), which is the
Fortran 90/95 standard, and a period which is typically used with DEC style RECORD
declarations. The use of a period may cause certain Fortran 90/95 conforming programs
to be misinterpreted (a period is used to delineate user defined operators and some
intrinsic operators). The default is -YNDFP=0. This switch implements Fortran 90/95
standard parsing for structure component referencing.

MS Fortran 77 Directives (-YMS7D)

The -YMS7D option causes the compiler to recognize Microsoft Fortran 77 style
directives in the form of $directive where the dollar-sign character is in column one of
the source file. directive must be from the set of supported MS directives.

DVF/CVF Compatible CHARACTER arguments (-YVF_CHAR)

The –YVF_CHAR option causes the compiler to pass and expect CHARACTER arguments in
a manner compatible with Digital/Compaq Visual Fortran. The length of the argument (as
a value) immediately follows the argument itself as opposed to the more common method
of passing the length(s) at the end of the argument list. This is primarily a Windows™
compatibility option

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER data types default to thirty-two bits or
four bytes (KIND=4). The –i2 option can be used to change this default length to sixteen
bits or two bytes (KIND=2). The –i8 option can be used to change the default INTEGER size
to 64 bits or 8 bytes (KIND=8). However, an explicit length specification in a type
declaration statement always overrides the default data length.

Using the Compilers 17

Fortran User Guide

Demote Double Precision to Real (-dp)

The -dp option will cause variables declared in a DOUBLE PRECISION statement and
constants specified with the D exponent to be converted to the default real kind. Similarly,
variables declared in a DOUBLE COMPLEX statement and complex constants specified with
D exponents will be converted to the complex kind in which each part has the default real
kind.

Promote REAL to REAL(KIND=8) (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits or four bytes (KIND=4) and sixty-four bits or eight bytes
(KIND=4), respectively. The -N113 option is used to promote these to their double
precision equivalents (KIND=8). This option does not affect variables which appear in
type statements with explicit sizes (such as REAL (KIND=4) or COMPLEX (KIND=4)).

One trip DO loops (-ej)

Fortran 90/95 requires that a DO loop not be executed if the iteration count, as established
from the DO parameter list, is zero. The -ej option will cause all DO loops to be executed at
least once, regardless of the initial value of the iteration count.

Static storage (-s)

The -s option is used to allocate local variables statically, even if SAVE was not specified
as an attribute. In this way, they will retain their definition status on repeated references
to the procedure that declared them. Two types of variables are not allocated to static
storage: variables allocated in an ALLOCATE statement and local variables in recursive
procedures.

Disable compiler directive (-xdirective)

The -x option is used to disable compiler directive in the source file. directive may be any
of the following:

ATTRIBUTES
FIXED
FIXEDFORMLINESIZE
FREE[FORM]
NAME
NOFREEFORM
PACK[ON]
PACKOFF
STATIC

See the section Absoft Fortran 90/95 Compiler Directives for more information on
using compiler directives in your source code.

18 Using the Compilers

Fortran User Guide

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 100000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

The default value can be increased by powers of ten by specifying the -T nn, where nn is
a positive integer constant. When this option is specified, the number of handles will be
100000x10nn bytes.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. The compiler will assume that the operation in
question will require 1024 bytes of temporary string space. This default value can be
increased by powers of ten by specifying the -t nn, where nn is a positive integer
constant. When this option is specified, the default temporary string size will be
1024x10nn bytes.

Module File Path(s) (-p path)

The Absoft Fortran 90/95 compiler will automatically search the current directory for
precompiled module files. If module files are maintained in other directories, the –p path
option can be used to specify additional paths to be searched. If path specifies a directory
name only, all module files in the directory will be searched. If path specifies a filename,
only the specified file will be searched.

Check Array Boundaries (-Rb)

When the –Rb compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Assumed size arrays whose last dimension is *
cannot be checked. In addition, file names and source code line numbers will be
displayed with all run time error messages.

Check Array Conformance (-Rc)

The –Rc compiler option is used to check array conformance. When array shapes are not
known at compile time and where they must conform, runtime checks are created to
insure that two arrays have the same shape.

Using the Compilers 19

Fortran User Guide

Check Substrings (-Rs)

When the –Rs compiler option is turned on, code will be generated to check that
character substring expressions do not specify a character index outside of the scope of
the character variable or character array element.

Check Pointers (-Rp)

Use –Rp compiler option is used to generate additional program code to insure that
Fortran 90 style POIINTER references are not null.

Character Argument Parameters (-YCFRL={0|1})

Use the –YCFRL=1 option to force the compiler to pass CHARACTER arguments in a
manner that is compatible with g77 and f2c protocols. Use the –YCFRL=0 option (the
default) to pass CHARACTER arguments in a manner that is compatible with Absoft
Compilers on other platforms. Note: this option should be used consistently on all files
that will be linked together into the final application.

External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS})

The -YEXT_NAMES option is used to specify how the external name of globally visible
symbols, such as FUNCTION and SUBROUTINE names, are emitted. By default, names are
emitted entirely in upper case (-YEXT_NAMES=UCS). Set this option to LCS to emit
names entirely in lower case. Set this option to ASIS to force external names to be
emitted exactly as they appear in the source program. This option controls how external
names will appear to other object files.

External Symbol Prefix (-YEXT_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of external procedure names.

External Symbol Suffix (-YEXT_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of external procedure names.

COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS})

The -YCOM_NAMES option is used to specify how the external names COMMON blocks are
emitted. The default (-YEXT_NAMES=UCS) is to emit COMMON block names entirely in
upper case. Set this option to LCS to emit names entirely in lower case.

COMMON Block Name Prefix (-YCOM_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of COMMON block names.

20 Using the Compilers

Fortran User Guide

COMMON Block Name Suffix (-YCOM_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of COMMON block names.

Cache Control (-YDEALLOC= {MINE | ALL | CACHE})

This option is used to control the underlying runtime memory management associated
with the Fortran 95 ALLOCATE and DEALLOCATE statements. By default the runtime caches
memory which has been deallocated (CACHE). Specifying MINE will cause all user
allocated memory to be returned via a call to free(2) when a call to DEALLOCATE is
executed. Specifying ALL will cause all user allocated memory to be returned via a call to
free(2) and return any compiler allocated memory that has been cached. The tradeoff is
minimizing memory use (ALL/MIME) versus speed of execution (CACHE).

Pointers Equivalent to Integers (-YPEI={0|1})

This option controls whether or not the compiler will allow or accept a CRI style pointer
to be equivalent to an integer argument. By default the Absoft Fortran 90/95 compiler
allows this. Even with this relaxed error checking the compiler will correctly choose the
right interface for the following example:

interface generic
 subroutine specific1(i)

integer i
 end subroutine specific1
 subroutine specific2(p)

integer i
pointer (p,i)

 end subroutine specific2
end interface
call generic(i)
call generic(loc(i))
end

Regardless of the switch setting, this example will compile and the executable generated
will be equivalent to:

call specific1(i)
call specific2(loc(i))

Absoft Fortran 90/95 Compiler Directives

Compiler directives are lines inserted into source code that specify actions to be
performed by the compiler. They are not Fortran 90/95 statements. If you specify a
compiler directive while running on a system that does not support that particular
directive, the compiler ignores the directive and continues with compilation.

Using the Compilers 21

Fortran User Guide

A compiler directive line begins with the characters CDIR$ or !DIR$. How you specify
compiler directives depends on the source form you are using.

If you are using fixed source form, indicate a compiler directive line by placing the
characters CDIR$ or !DIR$ in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a compiler directive continuation line.
Columns 7 and beyond can contain one or more compiler directives. If you are using the
default 72 column width, characters beyond column 72 are ignored. If you have specified
80 column lines, characters beyond column 80 are ignored.

If you are using free source form, indicate a compiler directive line by placing the
characters !DIR$ followed by a space, and then one or more compiler directives. If the
position following the !DIR$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a compiler directive continuation line.

If you want to specify more than one compiler directive on a line, separate each directive
with a comma.

NAME Directive

The NAME directive allows you to specify a case-sensitive external name in a Fortran
program. You can use this directive, for example, when writing calls to C routines. The
case-sensitive external name is specified on the NAME directive, in the following format:

!DIR$ NAME (fortran=“external” [,fortran=“external”]...)

where: fortran is the name used for the object throughout the Fortran
program whenever the external name is referenced.

external is the external name.

FREE[FORM] Directive

The FREE or FREEFORM directive specifies that the source code in the program unit is
written in the free source form. The FREE directive may appear anywhere within your
source code. The format of the FREE directive is:

!DIR$ FREE

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

22 Using the Compilers

Fortran User Guide

FIXED Directive

The FIXED directive specifies that the source code in the program unit is written in the
fixed source form. The FIXED directive may appear anywhere within your source code.
The format of the FIXED directive is:

!DIR$ FIXED

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

NOFREEFROM Directive

The NOFREEFORM directive is the same as the FIXED directive (see above) and specifies
that the source code in the program unit is written in the fixed source form.

FIXEDFORMLINESIZE Directive

The FIXEDFORMLINESIZE directive specifies the line length for fixed-form source code.
The format of the FIXEDFORMLINESIZE directive is:

!DIR$ FIXEDFORMLINESIZE:{72|80|132}

ATTRIBUTES Directive

The ATTTRIBUTES directive can be used to apply special attributes to simplify passing
variables between Fortran 90/95 and other languages. The format of the ATTTRIBUTES
directive is:

!DIR$ ATTTRIBUTES attr-list::sym-list

where: attr-list is a comma separated list of attributes from the
following set.

ALIAS
C
REFERENCE
STDCALL
VALUE

sym-list is a comma separated list of symbols.

The ALIAS attribute takes the form of

ALIAS:external

where: external is the is the external name of the procedure.

Using the Compilers 23

Fortran User Guide

PACK[ON] Directive

The PACK or PACKON directive specifies that sequenced structure fields be aligned on byte
even byte or word (four-byte) boundaries. The default is 1 (byte). The format for this
compiler directive is:

!DIR$ PACK [= {1|2|4}]

The packing directives affect the current program unit being compiled (if there is one), or
the next program unit (when there is no current program unit). The packing directive is
reset to the default (PACKOFF) after the end of each program unit. A packing directive
affects only derived-types found below the directive in the source code.

PACKOFF Directive

The PACKOFF directive returns structure field alignment to the default for the machine
architecture which is alignmed on the most efficient boundary for the data type. The
format for this compiler directive is:

!DIR$ PACKOFF

STACK Directive

The STACK directive causes the default storage allocation to be the stack in the program
unit that contains the directive. This directive overrides the -s command line option in
specific program units of a compilation unit. The format for this compiler directive is:

!DIR$ STACK

ABSOFT FORTRAN 77 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of FORTRAN programs. The options fall into three general
categories: Compiler Control, Optimizations, and Compatibility.

Each option is listed with the corresponding option letter(s) and a short description.
Options that take arguments (e.g. -h 4 or -o file) must have a space to separate the
option from the argument. The only exceptions are the B and N options; they do not have
a space between the option and the argument (e.g. -N33).

Compiler control

These options control various aspects of the compilation process such warnings,
verbosity, and definition of compiler directive variables. The generation of debugging
information, for the symbolic source-level debugger, Fx, is also controlled by compiler
control options.

24 Using the Compilers

Fortran User Guide

Show progress (-v)

Enabling the -v option will cause the f77 compiler driver, described earlier in this
chapter, to display the commands it is sending to the compiler, assembler, and linker.

Quiet Compilation (-q)

The Absoft Fortran 77 compiler normally displays information to standard output as it
compiles an application. Enabling the -q option will suppress any messages printed to
standard output. Error and warning messages will still be printed to standard diagnostic,
however.

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code and a
missing label on a FORMAT statement generate warning messages. Compile time
diagnostic messages are divided into two categories: errors and warnings. Error messages
indicate that the compiler was unable to generate an output file. Warning messages
indicate that some syntactic element was not appropriate, but the compiler was able to
produce an output file.

Suppress alignment warnings (-A)

The compiler normally will issue a warning message if a variable is aligned on a
boundary that does not match its size. Misaligned storage locations slow down memory
access and can cause difficulty if you attempt to port the program to other computers.
Use the -A option to suppress the listing of this type of warning only.

Warn of non-ANSI usage (-N32)

Use of the -N32 option will cause the compiler to issue a warning whenever the source
code contains an extension to the ANSI FORTRAN 77 standard (American National
Standard Programming Language FORTRAN, X3.9-1978). This option is useful for
developing code which must be portable to other environments.

Check Syntax Only (-N52)

The –N52 option runs only the front end of the compiler. No object or executable files are
created.

Append Underscore To Names (-B108)

Use of the –B108 option directs the compiler to append an underscore to SUBROUTINE and
FUNCTION definitions and references. This option can be used to avoid name conflicts
with the system libraries or other Fortran environments.

Character Argument Parameters (-N90)

Using the Compilers 25

Fortran User Guide

Use the –N90 option to force the compiler to pass CHARACTER arguments in a manner that
is compatible with g77 and f2c protocols. The default is to pass CHARACTER arguments in
a manner that is compatible with Absoft Compilers on other platforms.

Disable Stack Alignment (-B112)

Use the –B112 option to prevent the compiler from aligning the stack to an optimal
sixteen-byte boundary at the start of a main program. Use of this option is likely to cause
a compiled program to run slower.

BLOCK DATA Code Section (-N116)

BLOCK DATA subprograms generate data initialization records only in the object file.
Since they do not generate code references, they cannot effectively be used in libraries;
the linker will not include them, as they resolve no references. Use the –N116 option to
force the compiler to generate empty, stub routines that will allow the linker to use the
associated data initialization records.

Procedure Trace (-B80)

Specifying the -B80 option will cause the compiler to generate code to write the name of
the currently executing procedure to standard out. This option is useful for tracing
program execution and quickly isolating execution problems.

Assume Pointer Aliases Exist (-B19)

The -B19 option is selected when more than one symbolic name is used to reference a
variable’s memory location. This can occur when pointers are used, when variables in
COMMON are also passed as arguments, or when two dummy arguments are the same
actual argument.

Note: Standard FORTRAN should not require this option, but the use of extensions may
dictate its use. Performance loss should be expected when this option is selected.

Check array boundaries (-C)

When the -C compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Exceptions: arrays whose last dimension is *
and dummy arguments whose last dimension is 1 cannot be checked. In addition, file
names and source code line numbers will be displayed with all run time error messages.

Generate Debugging Information (-g)

Specifying the –g option will cause the compilers to include symbol and line information
appropriate for debugging a compiled program with Fx, the Absoft debugger.

The Absoft Fortran 90/95 and FORTRAN 77 compilers have the capability to output
special symbol information for use with the Fx debugger from Absoft. This information

26 Using the Compilers

Fortran User Guide

allows Fx to display the contents of adjustable arrays, arrays with more than four
dimensions, arrays with lower bounds other than 1, and arrays with dimensions greater
than 32767.

Info for unused structures (-N111)

Normally, the compiler does not place information in the debugger symbol tables for
structures which are only declared, but never have storage associated with them. This
keeps the symbol tables to a manageable size when include files are used to make
structure declarations. The -N111 option can be used to force the compiler to place
information in the debugger symbol tables for all structures whether they have associated
storage or not. This option is only enabled when the -g option has been selected.

Generate Profiler Information (-P)

Specifying the –P option will place information for profiling execution into a compiled
program. For information on using the Linux profiler, see the Linux manual page for
gprof.

Conditional compilation (-x)

Statements containing an X or a D in column one are treated as comments by the
compiler unless the -x compiler option is selected. This option allows a restricted form of
conditional compilation designed primarily as a means for easily removing debugging
code from the final program. When the -x option is selected, a blank character replaces
any occurrence of an X or a D in column one. The only source formats for which
conditional compilation is valid are standard FORTRAN 77, VAX Tab-Format, and wide
format. The compiler also incorporates a complete set of statements for conditional
compilation which are described in the Conditional Compilation Statements section of
the FORTRAN 77 Program chapter in the FORTRAN 77 Language Reference Manual.

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 20000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

Define Compiler Directive (-Dname[=value])

The -D option is used to define conditional compilation variables from the command line.
value can only be an integer constant. If value is not present, the variable is given the
value of 1. Conditional compilation is described in the Conditional Compilation
Statements section in the FORTRAN 77 Program chapter of the FORTRAN 77
Language Reference Manual.

Using the Compilers 27

Fortran User Guide

Set Include Paths (-I)

Use this command to select additional directory paths to be searched for include and
header files. The -I option is used to supply a comma separated list of directory paths
which are prepended to file names used with the Fortran INCLUDE statement or the C/C++
#include directive.

-Ipath[,path…]

The paths are prepended in the order presented with the -I option when the include file is
not first found in the local directory and when it is not itself an absolute path (a full file
specification).

Optimizations

Absoft Fortran 77 is a globally optimizing compiler, so various optimizers can be turned
on which affect single statements, groups of statements or entire programs. There are
pros and cons when choosing optimizations; the application will execute much faster
after compilation but the compilation speed itself will be slow. Some of the optimizations
described below will benefit almost any FORTRAN code, while others should only be
applied to specific situations.

You may want to ignore optimizations during program development or for compilations
of FORTRAN source code ported to the Linux to save time. When a FORTRAN program
is executing correctly and has been debugged, turn on optimizations for improved run-
time performance. In general, all optimizations should be selected carefully.

Basic Optimizations (-O1)

The –O1 option will cause most code to run faster and enables optimizations that do not
rearrange your program. The optimizations include common subexpression elimination,
constant propagation, and branch straightening. This option is generally usable with
debugging options. –cpu:host is implied with this option.

Advanced Optimizations (-O2)

The –O2 option enables advanced optimizers that can substantially rearrange the code
generated for a program. The optimizations include strength reduction, loop invariant
removal, code hoisting, and loop closure. This option is not usable with debugging
options. –cpu:host is implied with this option.

28 Using the Compilers

Fortran User Guide

DATA treated as constants (-N5)

The -N5 compiler option enables the optimizer to propagate as constants those variables
initialized in DATA statements that are not redefined. For example:

Original code: Becomes:
SUBROUTINE DIVIDE(A)
INTEGER A(50),B,C

DATA B,C/100,10/

DO I=1,50
A(I) = A(I)/B-I*C

END DO
RETURN
END

SUBROUTINE DIVIDE(A)
INTEGER A(50),B,C

DATA B,C/100,10/

DO I=1,50
A(I) = A(I)/100-I*10

END DO
RETURN
END

This option is automatically turned on with the -O option for basic optimizations.

Function decomposition (-N18)

The -N18 compiler option causes intrinsic functions to be decomposed in line wherever
possible. For example:

Original code: Becomes:
I = MOD (J,K) I = (J-((J/K)*K))

This option is automatically turned on with the -O option for basic optimizations.

Evaluate Constant Functions (-N41)

Use the –N41 compiler option to direct the compiler to evaluate FORTRAN 77 intrinsic
functions whose arguments are constant expressions. This option is automatically turned
on with the -O option for basic optimizations.

Loop unrolling (-U and -h nn and -H nn)

Using the Compilers 29

Fortran User Guide

The Absoft Fortran 77 compiler has the ability to automatically unroll some of the loops
in your source code. Loops may be unrolled by any power of two. Generally it is
beneficial to unroll loops which execute a large number of iterations, while the benefit is
small for loops which iterate only a few times. Due to this, only innermost loops are
considered for unrolling. The -h nn option will cause the compiler to unroll your
innermost loops nn times, where nn is any power of two. The -H nn option will cause the
compiler to consider loops containing nn or fewer statements for unrolling. When the -O
option is used, the default is to only consider loops of a single line and unroll them four
times. Using the -U option is equivalent to using -h 2 -H 10, causing innermost loops of
ten or fewer lines to be unrolled twice. Loop unrolling will provide a speed increase in
most cases, but will make your application larger and it will require more memory to
compile. Consider the following example:

Original code: Becomes:
SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,N
A(i) = X*A(i)

END DO
RETURN
END

SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,MOD(N,4)
A(i) = X*A(i)

END DO
DO i=4,N-(MOD(N,4)),4

A(i) = X*A(i)
A(i+1) = X*A(i+1)
A(i+2) = X*A(i+2)
A(i+3) = X*A(i+3)

END DO
RETURN
END

At least three comparisons and three branch instructions are saved each time the second
loop is executed. Note that if your code contains extended range DO loops, unrolling loops
will invalidate your program.

Optimize Address Expressions (-N86)

The –N86 option forces the compiler to remove indexed address expressions from within
loops. For the X86, this often has the desirable effect of reducing instruction stalls for
floating point access. However, because the index must still be calculated, additional
integer operations must be performed. If the application needs to be as fast as possible,
try running once with this option and once without.

Compatibility

These options allow Absoft Fortran 77 to accept older or variant extensions of
FORTRAN 77 source code from other computers such as mainframes. Many of these can
be used for increased compatibility with FORTRAN 77 compilers on various mainframe
computers.

30 Using the Compilers

Fortran User Guide

Folding to lower case (-f)

The -f option will force all symbolic names to be folded to lower case. By default, the
compiler considers upper and lowercase characters to be unique, an extension to
FORTRAN 77. If you do not require case sensitivity for your compilations or specifically
require that the compiler not distinguish between case, as in FORTRAN 77, use this
option. This option should be used for compatibility with VAX and other FORTRAN
environments.

Folding to upper case (-N109)

By default, the compiler considers upper and lowercase characters to be unique, an
extension to FORTRAN 77. If you do not require case sensitivity for your compilations
or specifically require that the compiler not distinguish between case, as in FORTRAN
77, including the -N109 option on the compiler invocation command line will force all
symbolic names to be folded to upper case.

Static storage (-s)

In FORTRAN 66, all storage was static. If you called a subroutine, defined local
variables, and returned, the variables would retain their values the next time you called
the subroutine. FORTRAN 77 establishes both static and dynamic storage. Storage local
to an external procedure is dynamic and will become undefined with the execution of a
RETURN statement. The SAVE statement is normally used to prevent this, but the -s
compiler option will force all program storage to be treated as static and initialized to
zero. The -N1 compiler option causes the definition of variables initialized in DATA
statements to be maintained after the execution of a RETURN or END statement. This option
should be used for compatibility with VAX and other FORTRAN environments.

Use record lengths in I/O (-N3)

If the -N3 compiler option is used, record length information will be included for sequen-
tial, unformatted files as if the “BLOCK=-1” specifier were implicitly included in all
appropriate OPEN statements. See the Input/Output and Format Specifications chapter
of the FORTRAN 77 Language Reference Manual for more information about the
BLOCK=-1 specifier. This option should be used for compatibility with VAX and other
FORTRAN environments.

RECL Defines 32-bit words (-N51)

If the -N51 compiler option is used, the “RECL” specifier will be interpreted as the number
of 32 bit words in a record for UNFORMATTED, DIRECT access files. Without this option,
RECL defines the number of bytes in a record. This option should be used for
compatibility with VAX and other FORTRAN environments.

Using the Compilers 31

Fortran User Guide

One-trip DO loops (-d)

FORTRAN 66 did not specify the execution path if the iteration count of a DO loop, as
established from the DO parameter list, was zero. Many processors would execute this
loop once, testing the iteration count at the bottom of the loop. FORTRAN 77 requires
that such a DO loop not be executed. The -d option will cause all DO loops to be executed
at least once, regardless of the initial value of the iteration count.

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER and LOGICAL data types default to thirty-
two bits (four bytes). The –i2 option can be used to change this default length to sixteen
bits (two bytes) for both INTEGER and LOGICAL. The –i8 option can be used to change the
default INTEGER size to 64 bits (8 bytes). However, an explicit length specification in a
type declaration statement always overrides the default data length.

Zero extend INTEGER*1 (-N102)

Normally, INTEGER*1 variables are sign extended when they are loaded from memory,
providing for integers which range from -128 to 127. In order to provide compatibility
with other implementations of FORTRAN, the -N102 option can be used to direct the
compiler to zero extend these variables when they are loaded, making them essentially
unsigned entities with a range of 0-255.

Set Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default . The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files.

Set Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default . The CONVERT specifier in the OPEN statement may be used
to override this setting for individual files.

Set COMMON block name (-N22)

The -N22 option is used to change the scheme the compiler employs for generating global
names for COMMON blocks. The default is to prepend the characters “_C” to the COMMON
block name. This option cause the compiler to append a single underscore (_) instead.

Evaluate left-to-right (-N20)

When two or more operators of equal precedence appear consecutively in an arithmetic
expression, the -N20 forces the compiler to evaluate the operators from left to right

32 Using the Compilers

Fortran User Guide

(except for the exponentiation operators), regardless of whether it is the most efficient
method or not.

Double precision transcendentals (-N2)

The -N2 option causes the compiler to use double precision or double complex transcen-
dental intrinsic functions, overriding single precision and complex type specifications.
This provides an extra bit of precision in some cases and is compatible with some C
environments.

Maintain Floating Point Precision (-e)

When the -e option is enabled, all assignments to program variables result in both a store
to memory and potentially a load from memory. For all data types maintained in
processor registers, if the precision of the data type in memory is less than the precision
of the data type in a register, this has the effect of rounding (floating point data types) or
truncating (integral data types). Normally, Absoft FORTRAN 77 uses sophisticated
methods to avoid storing or loading data unless it is actually required; the net effect being
much faster executables from reduced memory traffic and small executables from less
code generation. However, for a small number of programs, the additional precision
supported by the machine registers actually causes the program to produce unexpected
results. This is usually the fault of poor numerical practices or bad algorithms in
otherwise valid code. Dues to the drastic effects on execution speed, we recommend not
using this option unless it is proved absolutely necessary. This option will also force the
rounding of some internally created expression intermediates and delay the evaluation of
most constant expressions until runtime.

Sign extend BYTE() & WORD() (-N7)

The -N7 compiler option causes the compiler to extend the sign of a value returned from
the intrinsic functions BYTE and WORD. This option has no effect on the memory assign-
ment statements described in the Expressions and Assignments chapter of the
FORTRAN 77 Language Reference Manual.

DATA variables are static (-N1)

The -N1 compiler option causes all variables initialized with DATA statements to be stored
as static variables.

Promote REAL and COMPLEX (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits (four bytes) and sixty-four bits (eight bytes), respectively. The -
N113 option is used to promote these to their double precision equivalents: DOUBLE
PRECISION and DOUBLE COMPLEX. This option does not affect variables which
appear in type statements with explicit sizes (such as REAL*4 or COMPLEX*8).

Using the Compilers 33

Fortran User Guide

Escape sequences in strings (-K)

If the -K option is turned on, the compiler will transform certain escape sequences marked
with a ‘\’ embedded in character constants. For example ‘\n’ will be transformed into a
newline character for your system. Refer to the FORTRAN 77 Program chapter
FORTRAN 77 Language Reference Manual for more information on the escape
sequences that are supported.

Allows CASE without DEFAULT (-N4)

By default, a run-time error is reported if a CASE DEFAULT statement is not present in a
block CASE structure when a match is not found. The -N4 causes control of execution to
be transferred to the statement following the END SELECT statement when a CASE
DEFAULT statement is not present and no match is found, preventing such a run-time
error.

Allows UNIT= without FMT= (-N16)

If the -N16 compiler option is used, the format specifier FMT= may be omitted in an I/O
statement when the unit specifier UNIT= is present.

Pack STRUCTURE elements (-N33)

Normally, the fields in a STRUCTURE are aligned based on the standard for C. This may
cause spaces to be left between structure elements and space to be added to the end of a
structure. The -N33 option will cause structure fields to be “packed” on two byte
boundaries. You can also use the conditional compilation directives $PACK and $PACKOFF
to control the packing of individual structures (see the section Conditional Compilation
Directives in the FORTRAN 77 Program chapter of the FORTRAN 77 Language
Reference Manual). The use of this option may cause misaligned storage locations.

Align STRUCTURE fields to one byte boundaries (-N56)

The –N56 option will force structure fields to be completely “packed”. No padding will
occur between fields. The use of this option may cause misaligned storage locations.

Align STRUCTURE fields to two byte boundaries (-N57)

The –N57 option will force structure fields to be aligned to 2-byte boundaries. Fields
beginning at odd addresses will be aligned to the next even address. The use of this
option may cause misaligned storage locations for fields greater than 2 bytes in length..

34 Using the Compilers

Fortran User Guide

Align STRUCTURE fields to four byte boundaries (-N58)

The –N58 option will force structure fields to be aligned to 4-byte boundaries. Fields not
beginning at a modulo 4 address will be aligned to the next 4-byte boundary. The use of
this option may cause misaligned storage locations for fields greater than 4 bytes in
length..

Align STRUCTURE fields to eight byte boundaries (-N59)

The –N59 option will force structure fields to be aligned to 8-byte boundaries. Fields not
beginning at a modulo 8 address will be aligned to the next 8-byte boundary.

Align COMMON variables (-N34)

If a COMMON block is defined in a manner that causes a misaligned storage location,
the -N34 option can be used to insert space to eliminate the misalignment. This option
may invalidate your code if the same COMMON block is defined differently in different
program units.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. This undetermined length occurs when the REPEAT
function is used or when a CHARACTER*(*) variable is declared in a subroutine or
function. In these cases, the compiler will assume that the operation in question will
require 1024 bytes of temporary string space. This default value can be changed by
specifying the -t nn, where nn is a positive integer constant. When this option is specified,
the default temporary string size will be nn bytes.

Warnings for Undeclared Variables (-N114)

If the IMPLICIT NONE statement appears in a program unit, the compiler will issue an
error diagnostic whenever it encounters an undeclared variable. If you specify the –N114
option, the compiler will issue a warning diagnostic.

Pad Source Lines (-N115)

Use the –N115 option to pad source lines to column 72 with spaces (or 132 with the –W
option). By default, the compiler considers only the characters actually present in the
source file. This option is useful when porting certain legacy programs that depend on the
compiler reading source records as card images.

Using the Compilers 35

Fortran User Guide

Source Formats

For compatibility with other FORTRAN environments and to provide more flexibility,
the compiler can be directed to accept source code that has been written in a variety of
different formats. The default setting is to accept only ANSI standard FORTRAN source
code format. See the FORTRAN 77 Program chapter of the FORTRAN 77 Language
Reference Manual for more information on alternative source code formats.

Fortran 90/95 Free-Form (-8)

Use of the -8 option instructs the compiler to accept source code written in the format for
the FORTRAN 90/95 Free Source Form.

IBM VS Free Form (-N112)

Use of the -N112 option causes the compiler to accept source code in the form specified
by IBM VS Free Form.

VAX Tab-Format (-V)

Use of the -V option causes the compiler to accept source code in the form specified by
VAX Tab Format.

Wide format (-W)

Use of the -W option causes the compiler to accept statements that extend beyond column
72 up to column 132.

CHAPTER 3

Porting Code

This chapter describes issues involved in porting legacy FORTRAN 77 code from other
platforms. One of the major design goals for Absoft Pro Fortran is to permit easy porting
of source code from mainframe computers such as VAX and IBM, and from workstations
such as Sun. The result is the rich set of statements and intrinsic functions accepted by
the Absoft Fortran 77 compiler.

The Absoft Fortran 77 compiler is recommended for porting most legacy codes because
of the number extensions and features it supports. Consequently, FORTRAN 77 options
and language features will be described in this chapter. However, in most cases, the
Fortran 90/95 compiler has equivalent options and can also be used. Refer to the Using
the Compilers chapter for information on Fortran 90/95 compile time options.

 The last section of this chapter describes Linux specific issues about porting code.

As a general rule when porting code, use the following two compiler options:

-f Fold all symbols to lower case.

-s Force all program storage to be treated as static and initialized to zero.

Ported programs that have incorrect runs or invalid results are usually caused by the
differences between Linux and other environments such as floating point math precision
or stack-size issues. See the section Other Porting Issues later in this chapter for special
considerations when porting code to Linux. In addition, you may want to use this option:

-C Check array boundaries and generate better runtime errors. Using this
option makes programs slightly larger and they will execute slower.

-B111 Validate FPU stack after procedure calls.

If you want to use the Absoft debugger, Fx, add the -g option to generate debugging
information.

PORTING CODE FROM VAX

Absoft Fortran 77 automatically supports most of the VAX FORTRAN language
extensions. Below are a list of key VAX FORTRAN extensions that are supported and a
list of those that are not supported. For a complete list of VAX extensions, refer to
Appendix H. Using various options, the compiler can also accept VAX Tab-Format
source lines and/or 132-column lines. Otherwise, only ANSI FORTRAN 77 fixed format
lines are accepted.

38 Porting Code

Fortran User Guide

Key Supported VAX FORTRAN Extensions

• NAMELIST—the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, UNION, MAP, %FILL statements
• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats
• “!” comments

Key Unsupported VAX FORTRAN Extensions

• Quad-precision floating point math
• Absoft Pro Fortran uses IEEE floating point representation
• I/O statements DELETE, DEFINE FILE, and REWRITE
• Data dictionaries

Compile Time Options and Issues

Absoft Fortran 77 can be made even more compatible with VAX FORTRAN by using a
group of compiler options collectively referred to as the “VAX compatibility options”,
listed below:

-f Fold all symbols to lower case.
-s Force all program storage to be treated as static and initialized to zero.
-N3 Include record length information for SEQUENTIAL, UNFORMATTED files.
-N51 Interpret the RECL specifier as the number of 32-bit words in a record.

VAX-compatible time, date, and random number routines are available by linking with
the library file libV77.a in the /opt/absoft/lib directory. The routine names may be
referenced as all upper case, all upper case with an underscore appended (-B108), or all
lower case with an underscore appended. The routine names are:

DATE subroutine returns current date as CHARACTER*9
IDATE subroutine returns current date as 3 INTEGER*4
TIME subroutine returns current time as CHARACTER*8
SECNDS subroutine returns seconds since midnight
RAN function returns random number

The following list of VAX FORTRAN “qualifiers” shows the equivalent Absoft Fortran
77 options or procedures:

/ANALYSIS_DATA no equivalent
/CHECK BOUNDS -C to check array boundaries
/CHECK NONE do not use the -C option
/CHECK OVERFLOW no equivalent

Porting Code 39

Fortran User Guide

/CHECK UNDERFLOW no equivalent
/CONTINUATIONS Absoft Fortran 77 automatically accepts an unlimited number of

continuation lines
/CROSS_REFERENCE no equivalent
/DEBUG -g to generate debugging information
/D_LINES -x to compile lines with a “D” or “X” in column 1
/DIAGNOSTICS append > filename to the f77 command line to create a file

containing compiler warning and error messages.
/DML no equivalent
/EXTEND_SOURCE -W to permit source lines up to column 132 instead of 72
/F77 do not use the -d option
/NOF77 -d for FORTRAN 66 compatible DO loops
/G_FLOATING see the section Numeric Precision later in this chapter
/I4 do not use the -i option
/NOI4 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and

LOGICAL*2

/LIBRARY no equivalent
/LIST a symbol table dump may be generated with the -D option
/MACHINE_CODE -S to generate an assembly source file that can be assembled
/OBJECT no equivalent—you can use the cp command to copy an object file

to another name
/OPTIMIZE -O to use basic optimizations
/PARALLEL no equivalent
/SHOW no equivalent
/STANDARD -N32 to generate warnings for non-ANSI FORTRAN 77 usage
/WARNINGS DECLARATIONS

the IMPLICIT NONE statement may be used to generate warnings for
untyped data items

/WARNINGS NONE -w to suppress compiler warnings

The tab size on Linux may be different than the VAX. You can set the tab size for the
compiler with the environment variable TABSIZE. For more information about tab size,
see the Tab Character Size section later in this chapter.

Runtime Issues

If the program is having problems with I/O, make sure you are using the -N3 and -N51
options described in detail in sections Use record lengths in I/O and RECL Defines 32-
bit words in the chapter Using the Compilers.

PORTING CODE FROM IBM VS FORTRAN

Absoft Fortran 77 automatically supports most of the IBM VS FORTRAN language
extensions. Below is a list of key VS FORTRAN extensions that are supported and not

40 Porting Code

Fortran User Guide

supported. Using a compiler option, Absoft Fortran 77 can also accept VS FORTRAN
Free-Form source lines which use 80 columns, otherwise, only ANSI FORTRAN 77
fixed format lines are accepted.

Key Supported VS FORTRAN Extensions

• “*” comments in column 1
• Can mix CHARACTER and non-CHARACTER data types in COMMON blocks
• The NAMELIST terminator may be an ampersand “&”
• Hollerith constants

Key Unsupported VS FORTRAN Extensions

• Quad-precision floating point math
• Absoft Fortran 77 uses IEEE floating point representation (more accurate)
• Debug statements
• I/O statements DELETE, REWRITE, and WAIT
• INCLUDE statement syntax is different

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with VS FORTRAN by using these
compiler options:

-f Fold all symbols to lower case
-s Force all program storage to be treated as static and initialized to zero
-N3 Include record length information for SEQUENTIAL, UNFORMATTED files

Run-time Issues

If the program is having problems with unformatted I/O, make sure you are using the -N3
option described in detail in the chapter Using the Compilers.

PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)

Absoft Fortran 77 automatically supports many of the Microsoft FORTRAN language
extensions. Below is a list of key Microsoft FORTRAN extensions that are supported and
not supported. Absoft Fortran 77 does not have the code size restrictions found in the
segmented Microsoft FORTRAN models.

Key Supported Microsoft FORTRAN Extensions

• The NAMELIST terminator may be an ampersand “&”
• The Free-Form Source Code is very similar to VS FORTRAN (-V option)
• Unlimited number of continuation lines
• AUTOMATIC statement

Porting Code 41

Fortran User Guide

• STRUCTURE, RECORD, UNION, MAP statements
• SELECT CASE statements
• DO WHILE loops
• INCLUDE statement
• Conditional compilation statements

Key Unsupported Microsoft FORTRAN Extensions

• Metacommands
• MS-DOS specific intrinsic functions
• INTERFACE TO statement
• OPEN statement displays standard file dialog when using FILE=""

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with Microsoft FORTRAN by
using these compiler options:

-f Fold all symbols to lower case
-s Force all program storage to be treated as static and initialized to zero
-N3 Include record length information for SEQUENTIAL, UNFORMATTED files

If you use the Microsoft FORTRAN I/O specifier FORM='BINARY' to read and write
binary sequential files with no internal structure, do not use the -N3 option which includes
record length within sequential, unformatted files.

The following list of Microsoft FORTRAN metacommands shows the equivalent Absoft
Fortran 77 options or procedures:

$DEBUG -C to check array boundaries and other run-time checks
$DECLARE the IMPLICIT NONE statement may be used to generate warnings for

untyped data items
$DO66 -d for FORTRAN 66 compatible DO loops
$FLOATCALLS all floating point is calculated inline or with a threaded math library in

Absoft Fortran 77
$FREEFORM -V for IBM VS FORTRAN Free-Form source code
$INCLUDE use the INCLUDE statement
$LARGE not necessary — Absoft Fortran 77 does not have the data size

restrictions found in the segmented Microsoft FORTRAN models
$LINESIZE not applicable
$LIST no equivalent
$LOOPOPT -U for loop unrolling optimization; -R for loop invariant removal
$MESSAGE no equivalent
$PACK use $PACKON and $PACKOFF
$PAGE not applicable
$PAGESIZE not applicable

42 Porting Code

Fortran User Guide

$STORAGE:2 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and
LOGICAL*2

$STORAGE:4 do not use the -i option
$STRICT -N32 to generate warnings for non-ANSI FORTRAN 77 usage
$SUBTITLE not applicable
$TITLE not applicable
$TRUNCATE no equivalent

PORTING CODE FROM SUN WORKSTATIONS

Absoft Fortran 77 automatically supports most of the Sun FORTRAN language
extensions. Below is a list of key Sun FORTRAN extensions that are supported and not
supported. The Sun FORTRAN compiler appends an underscore to all external names to
prevent collisions with the C library. Absoft Fortran 77, by default, does not append an
underscore to maintain compatibility with Linux functions and other development
languages. The -B108 option may be used to append underscores to routine names.

Key Supported Sun FORTRAN Extensions

• NAMELIST; the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, POINTER, UNION, MAP, %FILL statements
• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats
• “!” comments in column 1

Key Unsupported Sun FORTRAN Extensions

• Quad-precision floating point math

PORTING CODE FROM INTEL 386/486/PENTIUM COMPUTERS

Absoft Pro Fortran is available for the Intel Pentium systems including Windows 95,
Windows 98, and Windows/NT. It has the same optimizations and language extensions
as Absoft Pro Fortran for Linux with PowerPC. The compilers are 100% source
compatible.

Porting Code 43

Fortran User Guide

PORTING CODE FROM MACINTOSH SYSTEMS

Language Systems Fortran

Absoft Fortran 77 and Language Systems Fortran share many extensions implemented in
other compilers. In addition, Absoft Fortran 77 automatically supports most of the
Language Systems Fortran specific language extensions. Below is a list of key Language
Systems extensions that are supported and a list of those that are not supported.

Key Supported Language Systems Fortran Extensions

• STRING declaration statement
• POINTER declaration statement
• LEAVE control statement
• GLOBAL, CGLOBAL, and PBLOBAL statements
• CEXTERNAL and PEXTERNAL statements
• INT1, INT2, INT4, and JSIZEOF intrinsic functions

Key Unsupported Language Systems Fortran Extensions

• variables in FORMAT statements
• Language Systems Fortran compiler directives

Other Absoft Macintosh Compilers

Over the past 15 years, Absoft has offered several different compilers for a number of
Macintosh environments. This section outlines some of the differences between these
products.

MacFortran This 68000 compiler supported ANSI FORTRAN 77 and compiled
programs directly from the Finder without using MPW. Although
it lacked optimizations and support for many of the extensions in
Absoft Pro Fortran for Macintosh with PowerPC, it compiled very
fast and was easy to use.

MacFortran/020 This 68000 compiler was the same as MacFortran but it could also
produce faster code for 68020 and 68030 systems that incorporated
a floating point unit.

MacFortran II This 68000 compiler is very similar to Absoft Pro Fortran for
Macintosh with PowerPC. It supports many of the same
optimizations and extensions, but is designed for 68000 based
Macintoshes.

DISTRIBUTION ISSUES

44 Porting Code

Fortran User Guide

If you plan to distribute executable programs generated with Absoft Fortran 77, you must
obtain a copy of the Absoft “Redistribution License Agreement”, complete it, and return
it to Absoft. There is no charge for this license or the redistribution of programs created
with Absoft Pro Fortran. To obtain the Absoft “Redistribution License Agreement”, visit
the Absoft Corporation web site at http://www.absoft.com, or write to:

Absoft Corporation
2781 Bond Street
Rochester Hills, MI 48309

OTHER PORTING ISSUES

Not all porting and compatibility issues can be solved automatically by Absoft Pro
Fortran or by using various option combinations. There are six issues that must be
addressed on a program-by-program basis for the Linux computer:

Memory Management Tab Character Size
Naming Conventions Numeric Precision
File and Path Names Floating Point Math Control

Memory Management

Local variables and temporary values are stored in the ESP stack frame. All other storage
is allocated statically in the data and/or bss sections.

Dynamic Storage

Storage for variables local to a function or a subroutine is allocated in the stack frame. As
a result, local variables are undefined when execution of a function or subroutine begins
and become undefined again when execution terminates. This can cause difficulties in
two areas.

First, problems may arise when porting Fortran applications from environments that
statically allocate all memory; the application may except variables to retain their
definition status across procedure references. However, it produces applications that
make more effective use of memory and provides the ability to call functions and
subroutines recursively. The next section describes how to declare static storage space.

Second, the Linux stack is limited to 8 MB and large arrays allocated in the stack frame
may overflow the stack. You can increase the stack size with the ulimit command
(ulimit is a bash command - the csh equivalent to ulimit -s is limit stack) to raise
the stack size limit:

ulimit –s
8192
ulimit -s 32768
ulimit -s

Porting Code 45

Fortran User Guide

32768

The Linux stack limit is defined by the following around line 293 in sched.h:

#define _STK_LIM (8*1024*1024)

Static Storage

There are three ways to define static storage in Fortran. The first two allow static
variables to be defined selectively and are either placing them in COMMON blocks or using
the SAVE statement. The third method, using the –s compiler option, forces all program
storage to be treated as static. Static memory is allocated out of the data and/or bss
sections and remains defined for as long as the application runs. In addition, all static
storage will be initialized to zero when the application begins execution.

Naming Conventions

Global names in Fortran include all procedure names and COMMON block names, both of
which are significant to 31 characters. All global names in Absoft FORTRAN 77 are case
sensitive unless one of the compiler character case options has been selected. All global
names in Absoft Fortran 90/95 are upper case unless one of the compiler character case
options has been selected. All other symbols are manipulated as addresses or offsets from
local labels and are invisible to the linker.

Procedure Names

Names of functions and subroutines in Fortran programs will appear in the assembly
language source output or object file records exactly as they are stated in the Fortran
source code. This is identical to how the C Programming Language represents symbolic
names on Linux.

If a FORTRAN 77 subroutine is defined as:

SUBROUTINE SUB(…)
.
.
.
RETURN
END

It will be defined in assembly language as:

.globl sub
sub:

ret

46 Porting Code

Fortran User Guide

COMMON Block Names

The convention in Absoft Pro Fortran us to precede the name given in the COMMON
statement with the characters “_C”. BLANK common uses the characters _blank.

For example, the COMMON block declaration:

COMMON /the_block/ a, b, c

Eill produce the following assembler directive:

.comm _Cthe_block, 0x0000000c

File and Path Names

When the compiler encounters the Fortran INCLUDE statement, it takes the CHARACTER
constant immediately following as a file name, searches for the file, and, if the file is
found, copies its contents into the source file. If an absolute or relative path name is
specified, the compiler will search only that path. If only a file name is given, the
compiler will first look for the file in the current directory. It will then search any
directory defined by the environment variable F77INCLUDES. Additional search paths
may be specified with the –I compiler option.

Tab Character Size

The compiler assumes a standard tab size of eight spaces. This is the default for most
editors. When the compiler encounters a tab character (ASCII 9) during compilation, it is
replaced with the appropriate number of spaces for alignment to the next tab stop. By
setting the environment variable TABSIZE, the tab size used by the compiler can be
changed. The following command line for the Bourne shell will set the tab size for the
compiler to four spaces:

TABSIZE=4
export TABSIZE

Runtime Environment

A number of the aspects of the runtime environment can be controlled with the
ABSOFT_RT_FLAGS environment variable. This variable can be a combination of any of
the following switches (the leading minus sign is required for each switch and multiple
switches must be separated by one or more spaces):

-defaultcarriage

Causes the units preconnected to standard output to interpret carriage
control characters as if they had been connected with ACTION='PRINT'.

-fileprompt

Porting Code 47

Fortran User Guide

Causes the library to prompt the user for a filename when it implicitly
opens a file as the result of I/O to an unconnected unit number. By default,
the library creates a filename based on the unit number.

-vaxnames

Causes the library to use 'vax style' names (FORnnn.DAT) when creating
a filename as the result of I/O to an unconnected unit number.

-unixnames

Causes the library to use 'unix style' names (fort.nnn) when creating a
filename as the result of I/O to an unconnected unit number.

-bigendian

Causes the library to interpret all unformatted files using big endian byte
ordering.

-littleendian

Causes the library to interpret all unformatted files using little endian byte
ordering.

-noleadzero

Causes the library to surpress the printing of leading zeroes when
processing an Fw.d edit descriptor. This only affects the limited number of
cases where the ANSI standard makes printing of a leading zero
implementation defined.

-reclen32

Causes the library to interpret the value specified for RECL= in an OPEN
statement as 32-bit words instead of bytes.

-f90nlexts

Allows f90 namelist reads to accept non-standard syntax for array
elements. Without this flag, the following input results in a runtime error:

$ONE
A(1)=1,2,3,4
$END

When -f90nlexts is set, the values are assigned to the first four elements of
A.

48 Porting Code

Fortran User Guide

-nounit9

Causes UNIT 9 not to be preconnected to standard input and output.

-maceol

Formatted sequential files are in Classic Macintosh format where each
record ends with a carriage return,

-doseol

Formatted sequential files are in Windows format where each record ends
with a carriage return followed by a line feed.

-unixeol

Formatted sequential files are in Unix format where each record ends with
a line feed.

-hex_uppercase

Data written with the Z edit descriptor will use upper case characters for
A-F.

Floating Point Math Control

This section describes the basic information needed to control the floating-point unit
(FPU) built into Intel. The FPU provides a hardware implementation of the IEEE
Standard For Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985). As a result it
allows a large degree of program control over operating modes. There are two aspects of
FPU operation that can affect the performance of a FORTRAN program:

Rounding direction

Exception handling

A single subroutine is provided with the compiler that is used to retrieve the current state
of the floating-point unit or establish new control conditions:

CALL fpcontrol(cmd,arg)

where: cmd is an INTEGER variable that is set to 0 to retrieve the state of
the floating point unit and 1 to set it to a new state.

arg is an INTEGER variable that receives the current state of the
floating point unit if cmd is 0 and contains the new state if cmd is
1.

Porting Code 49

Fortran User Guide

Rounding Direction

The first aspect of FPU operation that may affect a FORTRAN program is rounding
direction. This refers to the way floating-point values are rounded after completion of a
floating-point operation such as addition or multiplication. The four possibilities as
defined in the fenv.inc include file are:

FE_TONEAREST round to nearest
FE_TOWARDZERO round toward zero
FE_UPWARD round toward +infinity
FE_DOWNWARD round toward -infinity

Exception Handling

The second aspect of FPU operation that affects FORTRAN programs is the action taken
when the FPU detects an error condition. These error conditions are called exceptions,
and when one occurs the default action of the FPU is to supply an error value (either
Infinity or NaN) and continue program execution. Alternatively, the FPU can be
instructed to generate a floating point exception and a run time error when an exception
takes place. This is known as enabling the exception. The five exceptions that can occur
in a FORTRAN program are:

FE_INEXACT inexact operation
FE_DIVBYZERO divide-by-zero
FE_UNDERFLOW underflow
FE_OVERFLOW overflow
FE_INVALID invalid argument

FSPLIT - SOURCE CODE SPLITTING UTILITY

When you need to manage large files, work on small portions of Fortran code, or port
code from other environments, you may want to split large, cumbersome source files into
one procedure per file. This can be done using the Fsplit tool. The command syntax for
the tool is shown below.

Fsplit [option…] [file…]

Fsplit splits FORTRAN source files into separate files with one procedure per file. The
following command line will generate individual files for each procedure:

Fsplit largefile.f

A procedure includes block data, function, main, program, and subroutine program
declarations. The procedure, proc, is put into file proc.f with the following exceptions:

• An unnamed main program is placed in MAIN.f.
• An unnamed block data subprogram is placed in a file named

blockdataNNN.f, where NNN is a unique integer value for that file. An
existing block data file with the same name will not be overwritten.

50 Porting Code

Fortran User Guide

• Newly created procedures (non-block data) will replace files of the
same name.

• File names are truncated to 14 characters.

Output files are placed into the directory in which the fsplit command was executed.
The tab size is pulled from the environment variable TABSIZE if it exists, otherwise, a tab
size of 8 is used. Options for the command are:

-v Verbose progress of fsplit is displayed on standard diagnostic.
-V Source files are in VAX FORTRAN Tab-Format.
-I Source files are in IBM VS FORTRAN Free-Form.
-8 Source files are in Fortran 90/95 Free Source Form.
-W Source files are in wide format.

CHAPTER 4

Interfacing With Other Languages

This chapter discusses interfacing Absoft Pro Fortran with the C Programming Language
and assembly language, debugging programs, and profiling executables. Although
Fortran programs can call C functions easily with just a CALL statement, the sections
below should be read carefully to understand the differences between argument and data
types.

INTERFACING WITH C

Absoft Pro Fortran is designed to be fully compatible with the implementation of the
standard C Programming Language provided on Linux. The linker can be used to freely
link C modules with Fortran main programs and vice versa. However, some precautions
must be taken to ensure proper interfacing. Data types in arguments and results must be
equivalent. The case of global symbols C is significant. The symbolic names of external
procedure must match in case.

52 Interfacing With Other Languages

Fortran User Guide

Fortran Data Types in C

Declarations for Fortran data types and the equivalent declarations in C are as follows:

Fortran C

LOGICAL*1 l unsigned char l;
LOGICAL*2 m unsigned short m;
LOGICAL*4 n unsigned long n;

CHARACTER*n c char c[n];

INTEGER*1 i or BYTE i char i;
INTEGER*2 j short j;
INTEGER*4 k int k;

long k;

REAL*4 a float a;
REAL*8 d double d;

COMPLEX*8 c struct complx {
 float x;
 float y;
};
struct complx c;

COMPLEX*16 d struct dcomp {
 double x;
 double y;
};
struct dcomp d;

The storage allocated by the C language declarations will be identical to the storage
allocated by the corresponding Fortran declaration.

There are additional precautions when passing Fortran strings to C routines. See the
section Passing Strings to C later in this chapter for more information.

Required Compiler Options

FORTRAN 77 code should be compiled with the following options:

-f fold symbols to lower case
-s use static storage
-B108 append trailing underscores to global names
-N90 use g77 CHARACTER argument protocols

Interfacing With Other Languages 53

Fortran User Guide

Fortran 90 code should be compiled with the following options:

-YEXT_NAMES=LCS fold symbols to lower case
-s use static storage
-B108 append trailing underscores to global names
-YCFRL=1 use g77 CHARACTER argument protocols

C code does not have to be compiled with any special options for the C compiler.

Rules for Linking

When linking Fortran and C programs, the f77 or f90 compiler driver should be used so
that the appropriate Fortran and C libraries are included in the final application. The
following command will compile the file f1.f with the FORTRAN 77 compiler and the
file c1.c with the C compiler. It will then link the two resulting object files along with
o1.o and the appropriate libraries to generate an executable application named exec:

f77 –o exec f1.f c1.c o1.o

If object files or libraries that have been built with g77 are used, the g77 runtime library
should be specified as either: -lf2c or –lg2c depending on your version of Linux.
Further, current information can be obtained in the technical support section at the Absoft
web site: www.absoft.com.

Passing Parameters Between C and Fortran

The Absoft Pro Fortran compilers use the same calling conventions as the C
programming language. Therefore, a Fortran routine may be called from C without being
declared in the C program and vice versa, if the routine returns all results in parameters.
Otherwise, the function must be typed compatibly in both program units. In addition, care
must be taken to pass compatible parameter types between the languages. Refer to the
table earlier in this chapter.

Reference parameters

By default, all Fortran arguments to routines are passed by reference, which means
pointers to the data are passed, not the actual data. Therefore, when calling a Fortran
procedure from C, pointers to arguments must be passed rather than values. Both integer
and floating point values may be passed by reference. Consider the following example:

SUBROUTINE SUB(a_dummy,i_dummy)
REAL*4 a_dummy
INTEGER*4 i_dummy

WRITE (*,*) 'The arguments are ',a_dummy, ' and ', i_dummy
RETURN
END

54 Interfacing With Other Languages

Fortran User Guide

The above subroutine is called from Fortran using the CALL statement:

a_actual = 3.3
i_actual = 9
CALL SUB(a_actual, i_actual)
END

However, to call the subroutine from C, the function reference must explicitly pass
pointers to the actual parameters as follows:

int main()
{

float a_actual;
int i_actual;
void SUB();

a_actual = 3.3;
i_actual = 9;
SUB(&a_actual,&i_actual);
return 0;

}

Note that the values of the actual parameters may then be changed in the Fortran
subroutine with an assignment statement or an I/O statement.

When calling a C function from Fortran with a reference parameter, the C parameters are
declared as pointers to the data type and the Fortran parameters are passed normally:

PROGRAM convert_to_radians
WRITE (*,*) 'Enter degrees:'
READ (*,*) c
CALL C_RAD(c)
WRITE (*,*) 'Equal to ',c,' radians'
END

void C_RAD(c)
float *c;
{

float deg_to_rad = 3.14159/180.0;
*c = *c * deg_to_rad;

}

Value parameters

Absoft Pro Fortran provides the intrinsic function %VAL() for passing value parameters.
Function interfaces may also be used to specify which arguments to pass by value.
Although it is generally pointless to pass a value directly to a Fortran procedure, these
functions may be used to pass a value to a C function. The following is an example of
passing a 4-byte integer:

WRITE (*,*) 'Enter an integer:'
READ (*,*) i
CALL C_FUN(VAL(i))

Interfacing With Other Languages 55

Fortran User Guide

END

void C_FUN(i)
int i;
{

printf ("%d is ",i);
if (i % 2 == 0)
 printf ("even.\n");
else
 printf ("odd.\n");

}

The value of i will be passed directly to C_FUN, and will be left unaltered upon return.
Value parameters can be passed from C to Fortran with use of the VALUE statement. The
arguments that are passed by value are simply declared as VALUE.

void C_FUN()
{
void FORTRAN_SUB();
int i;

FORTRAN_SUB(i);
}

SUBROUTINE FORTRAN_SUB(i)
VALUE i
...
END

Note that C will pass all floating-point data as double precision by default, and that the
only Fortran data type that cannot be passed by value is CHARACTER.

56 Interfacing With Other Languages

Fortran User Guide

Array Parameters

One-dimensional arrays can be passed freely back and forth as both language
implementations pass arrays by reference. However, since C and Fortran use different
row/column ordering, multi-dimensional arrays cannot be easily passed and indexed
between the languages.

INTEGER ia(10)

CALL C_FUN(ia)
WRITE (*,*) ia

END

void C_FUN(i)
int i[];
{
int j;

for(i=0; j<10; j++)
i[j]=j;

}

Function Results
In order to obtain function results in Fortran from C language functions and vice versa,
the functions must be typed equivalently in both languages: either INTEGER, REAL, or
DOUBLE PRECSION. All other data types must be returned in reference parameters. The
following are examples of the passing of function results between Fortran and C. The
names are case-sensitive, so trying to call cmax, for example, will result in an error at link
time.

A call to C from Fortran

PROGRAM callc
INTEGER*4 CMAX, A, B

WRITE (*,*) 'Enter two numbers:'
READ (*,*) A, B
WRITE (*,*) 'The largest of', A, ' and', B, ' is ', CMAX(A,B)
END

int CMAX (x,y)
int *x,*y;
{

return((*x >= *y) ? *x : *y);
}

A call to Fortran from C

main()
{
float QT_TO_LITERS(), qt;

Interfacing With Other Languages 57

Fortran User Guide

printf ("Enter number of quarts:\n");
scanf ("%f",&qt);
printf("%f quarts = %f liters.\n", qt, QT_TO_LITERS(&qt));

}

REAL*4 FUNCTION QT_TO_LITERS(q)
REAL*4 q;

QT_TO_LITERS = q * 0.9461;
END

Passing Strings to C

Fortran strings are a sequence of characters padded with blanks out to their full fixed
length, while strings in C are a sequence of characters terminated by a null character.
Therefore, when passing Fortran strings to C routines, you should terminate them with a
null character. The following Fortran expression will properly pass the Fortran string
string to the C routine CPRINT:

PROGRAM cstringcall
character*255 string
string = 'Moscow on the Hudson'
CALL CPRINT(TRIM(string)//CHAR(0))
END

void CPRINT (anystring)
char *anystring;
{

printf ("%s\n",anystring);
}

This example will neatly output “Moscow on the Hudson”. If the TRIM function were
not used, the same string would be printed, but followed by 235 blanks. If the CHAR(0)
function was omitted, C would print characters until a null character was encountered,
whenever that might be.

58 Interfacing With Other Languages

Fortran User Guide

You can also take advantage of the string length arguments that Fortran passes. After the
end of the formal argument list, Fortran passes (and expects) the length of each
CHARACTER argument as a 32-bit integer value parameter. For example:

SUBROUTINE FPRINT(string)
character*(*) string
print *, string
END

#include <string.h>

int main()
{
char string[] = {”Moscow on the Hudson”};
void FPRINT(char *, int);

FPRINT(string, strlen(string));
return 0;

}

Calling Fortran math routines

All of the Fortran intrinsic math functions which return values recognized by the C
Programming Language can be called directly from C as long as the Fortran run time
library, libf77math.a, is linked to the application.

Taking the intrinsic function names in lower case and adding two underscores to the
beginning forms the names of the functions that can be called.

The following example calls the Fortran intrinsic function SIN directly from C:

main()
{
float sin_of_a, a, __sin();

a = 3.1415926/6;
sin_of_a = __sin(a);

}

Naming Conventions

Global names in FORTRAN include procedure names and COMMON block names, both of
which are significant to 31 characters. All global names are case sensitive, meaning the
compiler recognizes the difference between upper and lower case characters. Use of the -
f option will fold global names to lower case, while the -N109 option will fold global
names to upper case. All other symbols in FORTRAN are manipulated as addresses or
offsets from local labels and are invisible to the linker.

Interfacing With Other Languages 59

Fortran User Guide

Procedure Names

Names of functions and subroutines in FORTRAN programs will appear in the assembly
language source output or object file records as they were typed in the source code with a
period prefix character attached. Symbolic names in the C language are case sensitive,
distinguishing between upper and lower case characters. To make FORTRAN code
compatible with C, avoid using the -f or -N109 options when compiling the FORTRAN
source code.

Accessing COMMON blocks from C

COMMON block names are global symbols formed in Absoft Pro Fortran by prepending the
characters “_C” to the name of the COMMON block. The elements of the COMMON block
can be accessed from C by declaring an external structure using this name. For example,

COMMON /comm/ a,b,c

can be accessed with the C declaration:

extern struct {
float a;
float b;
float c;

} _CCOMM;

Declaring C Structures in Absoft Pro Fortran

If there are equivalent data types in FORTRAN for all elements of a C structure, a
RECORD can be declared in FORTRAN to match the structure in C:

C FORTRAN

struct str { STRUCTURE /str/
char c; CHARACTER c
long l; INTEGER*4 l
float f; REAL*4 f
double d; REAL*8 d
}; END STRUCTURE
struct str my_struct; RECORD /str/ my_struct

By default, the alignment of the C structure should be identical to the FORTRAN
RECORD. Refer to the Specification and DATA Statements chapter of the FORTRAN 77
Language Reference Manual for more information on the FORTRAN RECORD type.

60 Interfacing With Other Languages

Fortran User Guide

INTERFACING WITH ASSEMBLY LANGUAGE

This section discusses how arguments and results are passed on the stack and in registers.

The Fortran Stack Frame

The addresses of arguments to a Fortran procedure are passed in a right to left order on
the ESP the stack. The lengths of character arguments are passed as 32 bit integers above
these addresses. On entry to a Fortran procedure, the stack frame is defined as follows:

Subroutine declaration: SUBROUTINE sub(arg 1, ... ,arg n)

4+((n*4)+(4*(n-1))+(esp)) length of character arg n
.
.
.

4+((n*4)+(esp)) length of character arg 1
4+(((4*(n-1))+(esp)) address of arg n

.

.

.
4+(esp) address of arg 1

argument position = 4 + ((m-1) * 4)
length position = 4 + (n * 4 + 4 + (m-1) * 4)

where: m = argument number
n = total arguments

The Fortran Stack Frame

Value arguments for all data types are passed in the stack frame beginning at the
argument position described above and extending as far as they need to. Value arguments
that are less than four bytes in length are extended to four bytes before they are passed.
The stack is always aligned to a sixteen byte boundary.

Space for CHARACTER and derived type function results is passed as if it were an extra
argument at the beginning of the argument list. For example, the following two calls are
equivalent in respect to how arguments are passed to the external function or subroutine:

CHARACTER*10 funct, arg, result
EXTERNAL sub

result = funct(argument)
CALL sub(result,argument)

Interfacing With Other Languages 61

Fortran User Guide

Function Results

Absoft Pro Fortran returns all numeric and logical function registers. Floating point
results are returned in st(0) or st(0) and st(1). Integer and logical results are returned
in EAX. POINTER results are also returned in EAX.

CHARACTER and derived type results cannot be returned in registers. Since space for the
result is passed in as the first argument, no result need be returned. RECORD results are
returned in the same fashion except that EAX is set to point the returned structure.

DEBUGGING

Debugging a Fortran program is accomplished with the Absoft source-level debugger,
Fx™. This is a multi-language, windowed debugger designed especially for Linux based
computers. The operation of the debugger is detailed in the document, Fx Debugger
User Guide. The following paragraphs describe the compiler options and resources
necessary to prepare a program for debugging.

Compiler Options

The -g compiler option directs the compiler to add symbol and line number information
to the object file. This option should be enabled for each source file that you will want to
have source code displayed while debugging. It is not required for files that you are not
interested in.

It is recommended that all optimization options be disabled while debugging. This is
because the optimizers can greatly distort the appearance and order of execution of the
individual statements in your program. Code can be removed or added (for loop
unrolling), variables may be removed or allocated to registers (making it impossible to
examine or modify them), and statements may be executed out of order.

PROFILING

The Linux operating system includes the libraries and tools necessary to obtain procedure
level profiles of your application. You simply create an instrumented version of your
application (see Compiler Options below) and then execute it. The file gmon.out will
automatically be created. Use gprof to display and analyze the results.

Compiler Options

The -P compiler option directs the compiler to add the symbol information to the object
file necessary to profile an application. Enabling this option will allow the application to
report the number of times a particular subroutine is called or a function is referenced.

All other options that you would normally use should be enabled, including optimization.

Appendix A

Absoft Compiler Option Guide

This appendix summarizes general options for Absoft Pro Fortran compilers and specific
options for the Absoft Fortran 90/95 and FORTRAN 77 compilers. Refer to the chapter,
Using the Compilers for detailed descriptions of the options

ABSOFT PRO FORTRAN COMPILER OPTIONS

Option Effect

-c suppresses creation of an executable file — leaves compiled files in
object code format.

-g generates symbol information for Fx™.

-Lpath library file search path specification.

-lname library file specification.

-O enables a group of basic optimizations which will cause most code
to run faster without the expense of application size or memory
usage.

-o name directs the compiler to produce an executable file called name
where name is a Windows file name.

-P instrument executable for profiling.

-S generates an assembly language output file.

-s allocate local variables statically.

-u undefine a symbol to the linker.

-v directs the compiler to print status information as the compilation
process proceeds.

-w suppresses listing of all compile-time warning messages.

-Xoption linker option.

64 Absoft Compiler Option Guide

Fortran User Guide

FPU CONTROL OPTIONS

-round=mode set the FPU rounding method.

-trap=exception enable FPU exceptions.

-B23 do not modify the FPU control register.

-B24 preserve the FPU control register.

-B111 issue instructions to insure the integrity of the FPU stack.

X86 PROCESSOR SPECIFIC OPTIONS

-cpu:type Processor specific optimization.

-B23 do not modify the FPU control register.

+B41 disable floating point register allocation.

-B24 preserve the FPU control register.

-B111 issue instructions to insure the integrity of the FPU stack.

POWERPC PROCESSOR SPECIFIC OPTIONS

-B18 generates long branches.

+B51 disables fused floating point multiply/add instruction generation.

FORTRAN 90/95 CONTROL OPTIONS

-B19 assume pointer aliases exist.

-B80 causes the compiler to generate code to write the name of the
currently executing procedure to standard out.

-B108 append trailing underscores to procedure names.

-B112 disable stack alignment.

-dq Allow more than 100 error diagnostics.

Absoft Compiler Option Guide 65

Fortran User Guide

-ea Causes the f95 compiler to abort the compilation process on the
first error that it encounters.

-en Causes the compiler to issue a warning whenever the source code
contains an extension to the Fortran 90/95 standard.

-eR Directs the compiler to place information in the debugger symbol
tables for all structures whether or not they have associated storage

-g Generates symbol information for Fx™.

-Mnn Suppresses messages by message number.

-mnn Suppresses messages by message level.

-P Instrument executable for profiling.

-V Causes the f95 compiler to display its version number.

-v Directs the compiler to print status information as the compilation
process proceeds

-w Suppresses listing of all compile-time warning messages.

FORTRAN 90/95 OPTIMIZATION OPTIONS

-O1 enables level optimization.

-O2 enables block level optimization.

FORTRAN 90/95 SOURCE FORMAT OPTIONS

-fform sets the form of the source file to free, fixed, or alt_fixed.

-Wn sets the line length of source statements accepted by the compiler in
Fixed-Form source format.

66 Absoft Compiler Option Guide

Fortran User Guide

FORTRAN 90/95 COMPATIBILITY OPTIONS

-dp causes variables declared in a DOUBLE PRECISION statement and
constants specified with the D exponent to be converted to the default
real kind.

-ej causes all DO loops to be executed at least once, regardless of the
initial value of the iteration count.

-in set default integer size to n (4 or 8) bytes.

-N113 set default real size to 8 bytes (KIND=8).

-p path specify module search path

-s allocate local variables statically

-Rb generate code to check array boundaries.

-Rc generate code to validate substring indexes.

-Rp generate code to check for null pointers.

-Rs generate code check array conformance.

-tn this option increases the default temporary string size to 1024x10n
bytes.

-xdirective disable compiler directive in the source file.

-YCFRL forces the compiler to pass g77/f2c compatible CHARACTER
arguments.

-YCOM_NAMES specify COMMON block names externally in upper or lower case.

-YCOM_PFX specify COMMON block external name prefix.

-YCOM_SFX specify COMMON block external name suffix.

-YCSLASH directs the compiler to transform certain escape sequences marked
with a ‘\’ embedded in character constants.

-YEXT_NAMES Specify procedure names externally in upper, lower, or mixed case.

-YEXT_PFX Specify procedure external name prefix.

-YEXT_SFX Specify procedure external name suffix.

Absoft Compiler Option Guide 67

Fortran User Guide

-YMS7D Recognize Microsoft style compiler directives beginning with a ‘$’
in column 1.

-YNDFP disallow the use of a ‘.’ as a structure field separator.

-YPEI pointers are Equivalent to Integers allows a Cray-style pointer to be
manipulated as an integer.

FORTRAN 77 CONTROL OPTIONS

-A suppress alignment warnings.

-B19 used when more than one symbolic name is used to reference a
variable’s memory location. This can occur when pointers are used,
when variables in COMMON are passed as arguments, or when two
dummy arguments are the same actual argument.

-B80 causes the compiler to generate code to write the name of the
currently executing procedure to standard out.

-B108 append trailing underscores to procedure names.

-B112 disable stack alignment.

-C generates code to check that array indexes are within array bounds -
file names and source code line numbers will be displayed with all
run time error messages

-D used to define conditional compilation variables from the command
line (-D name[=value]) — if value is not present, the variable
is assigned the value of 1

-g generates symbol information for Fx™.

-Ipath specify path to search for INCLUDE files.

-N32 directs the compiler to issue a warning whenever the source code
contains an extension to the ANSI FORTRAN 77 standard

-N52 check syntax only.

-N90 forces the compiler to pass g77/f2c compatible CHARACTER
arguments.

68 Absoft Compiler Option Guide

Fortran User Guide

-N111 directs the compiler to place information in the debugger symbol
tables for all structures whether or not they have associated storage

-N116 BLOCK DATA code section.

-P instrument executable for profiling.

-q suppress non-diagnostic output.

-Tnn used to change the number of handles used internally by the
compiler.

-tnn modifies the default temporary string size to nn bytes from the
default of 1024 bytes

-v directs the compiler to print status information as the compilation
process proceeds

-w suppresses listing of all compile-time warning messages

-x replaces any occurrence of X or D in column one with a blank
character: allows a restricted form of conditional compilation

FORTRAN 77 OPTIMIZATION OPTIONS

-Hnn set loop unrolling limit.

-hnn set loop unrolling factor.

-N5 treat DATA as constants.

-N18 inline function decomposition.

-N41 evaluate constant intrinsic functions.

-N86 enable address expression opimization.

-O1 enables level optimization.

-O2 enables block level optimization.

FORTRAN 77 SOURCE FORMAT OPTIONS

Absoft Compiler Option Guide 69

Fortran User Guide

-8 directs the compiler to accept source code written in Fortran 90/95
Free Source Form

-N112 directs the compiler to accept source code written in IBM VS Free
Form

-V directs the compiler to accept VAX Tab-Format source code

-W directs the compiler to accept statements which extend beyond
column 72 up to column 132

FORTRAN 77 COMPATIBILITY OPTIONS

-B108 causes the compiler to define SUBROUTINE and FUNCTION
names with a trailing underscore

-d causes all DO loops to be executed at least once, regardless of the
initial value of the iteration count (FORTRAN 66 convention)

-f folds all symbolic names to lower case

-in changes the default storage length of INTEGER from 4 bytes to n
(2 or 8).

-K directs the compiler to transform certain escape sequences marked
with a ‘\’ embedded in character constants

-N1 causes all variables initialized with DATA statements to be stored as
static variables.

-N2 uses only double precision or double complex transcendental
intrinsics

-N3 includes record length information for sequential unformatted files

-N4 suppresses any run-time CASE DEFAULT error messages

-N7 extends the sign of a value returned from BYTE, and WORD
intrinsic functions

-N16 [FMT=] format specifier may be omitted in an I/O statement when
[UNIT=] unit specifier is present

-N20 directs the compiler to always evaluate operators of equal
precedence from left to right (except for exponential operators)

70 Absoft Compiler Option Guide

Fortran User Guide

-N22 don’t mangle COMMON block names with leading “_c”

-N26 force the compiler to consider the byte ordering of all unformatted
files to be big-endian by default

-N27 force the compiler to consider the byte ordering of all unformatted
files to be little-endian by default

-N33 causes structure fields to be “packed” — allocated with no space
between them

-N34 automatically align COMMON block variables

-N51 if a file is opened as DIRECT access UNFORMATTED, causes the
value set with RECL to be interpreted as the number of 32 bit
words in a record instead of the number of bytes

-N102 directs the compiler to zero extend INTEGER*1 variables to
unsigned entities with a range of 0-255 when loaded from memory

-N109 folds all symbolic names to UPPER CASE

-N113 changes REAL and COMPLEX data types without explicit length
declara-tion to DOUBLE PRECISION and DOUBLE COMPLEX

-N114 issue a warning diagnostic, rather than an error, for undeclared
variables in the presence of an IMPLICIT NONE declaration

-N115 Pad source lines to column 72 (or 132 with –W option)

-s forces all program storage to be treated as static: see -N1 also

71

Fortran User Guide

Appendix B

ASCII Table

ASCII codes 0 through 31 are control codes that may or may not have meaning on Linux.
They are listed for historical reasons and may aid when porting code from other systems.
Codes 128 through 255 are extensions to the 7-bit ASCII standard and the symbol
displayed depends on the font being used; the symbols shown below are from the Times
New Roman font. The Dec, Oct, and Hex columns refer to the decimal, octal, and
hexadecimal numerical representations.

Character Dec Oct Hex Description
NULL 0 000 00 null
SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry
ACK 6 006 06 acknowledge
BEL 7 007 07 bell code
BS 8 010 08 back space
HT 9 011 09 horizontal tab
LF 10 012 0A line feed
VT 11 013 0B vertical tab
FF 12 014 0C form feed
CR 13 015 0D carriage return
SO 14 016 0E shift out
SI 15 017 0F shift in
DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synch idle
ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel
EM 25 031 19 end of medium
SS 26 032 1A special sequence
ESC 27 033 1B escape
FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
US 31 037 1F unit separator

Character Dec Oct Hex Description
 32 040 20 space
! 33 041 21 exclamation
" 34 042 22 quotation mark
35 043 23 number sign
$ 36 044 24 dollar sign
% 37 045 25 percent sign
& 38 046 26 ampersand
' 39 047 27 apostrophe
(40 050 28 opening paren
) 41 051 29 closing paren
* 42 052 2A asterisk
+ 43 053 2B plus
, 44 054 2C comma
- 45 055 2D minus
. 46 056 2E period
/ 47 057 2F slash
0 48 060 30 zero
1 49 061 31 one
2 50 062 32 two
3 51 063 33 three
4 52 064 34 four
5 53 065 35 five
6 54 066 36 six
7 55 067 37 seven
8 56 070 38 eight
9 57 071 39 nine
: 58 072 3A colon
; 59 073 3B semicolon
< 60 074 3C less than
= 61 075 3D equal
> 62 076 3E greater than
? 63 077 3F question mark

72 ASCII Table

Fortran User Guide

Character Dec Oct Hex Description
@ 64 100 40 commercial at
A 65 101 41 upper case letter
B 66 102 42 upper case letter
C 67 103 43 upper case letter
D 68 104 44 upper case letter
E 69 105 45 upper case letter
F 70 106 46 upper case letter
G 71 107 47 upper case letter
H 72 110 48 upper case letter
I 73 111 49 upper case letter
J 74 112 4A upper case letter
K 75 113 4B upper case letter
L 76 114 4C upper case letter
M 77 115 4D upper case letter
N 78 116 4E upper case letter
O 79 117 4F upper case letter
P 80 120 50 upper case letter
Q 81 121 51 upper case letter
R 82 122 52 upper case letter
S 83 123 53 upper case letter
T 84 124 54 upper case letter
U 85 125 55 upper case letter
V 86 126 56 upper case letter
W 87 127 57 upper case letter
X 88 130 58 upper case letter
Y 89 131 59 upper case letter
Z 90 132 5A upper case letter
[91 133 5B opening bracket
\ 92 134 5C back slash
] 93 135 5D closing bracket
^ 94 136 5E circumflex
_ 95 137 5F underscore
` 96 140 60 grave accent
a 97 141 61 lower case letter
b 98 142 62 lower case letter
c 99 143 63 lower case letter
d 100 144 64 lower case letter
e 101 145 65 lower case letter
f 102 146 66 lower case letter
g 103 147 67 lower case letter
h 104 140 68 lower case letter
i 105 151 69 lower case letter
j 106 152 6A lower case letter
k 107 153 6B lower case letter
l 108 154 6C lower case letter
m 109 155 6D lower case letter
n 110 156 6E lower case letter
o 111 157 6F lower case letter
p 112 160 70 lower case letter
q 113 161 71 lower case letter
r 114 162 72 lower case letter
s 115 163 73 lower case letter
t 116 164 74 lower case letter
u 117 165 75 lower case letter
v 118 166 76 lower case letter
w 119 167 77 lower case letter
x 120 170 78 lower case letter
y 121 171 79 lower case letter
z 122 172 7A lower case letter
{ 123 173 7B opening brace
| 124 174 7C vertical bar
} 125 175 7D closing brace

Character Dec Oct Hex
~ 126 176 7E tilde

127 177 7F delete
� 128 200 80
� 129 201 81
‚ 130 202 82
ƒ 131 203 83
„ 132 204 84
… 133 205 85
† 134 206 86
‡ 135 207 87
ˆ 136 210 88
‰ 137 211 89
Š 138 212 8A
‹ 139 213 8B
Œ 140 214 8C
� 141 215 8D
� 142 216 8E
� 143 217 8F
� 144 220 90
‘ 145 221 91
’ 146 222 92
“ 147 223 93
” 148 224 94
• 149 225 95
– 150 226 96
— 151 227 97
˜ 152 230 98
™ 153 231 99
š 154 232 9A
› 155 233 9B
œ 156 234 9C
� 157 235 9D
� 158 236 9E
Ÿ 159 237 9F
 160 240 A0
¡ 161 241 A1
¢ 162 242 A2
£ 163 243 A3
¤ 164 244 A4
¥ 165 245 A5
¦ 166 246 A6
§ 167 247 A7
¨ 168 250 A8
© 169 251 A9
ª 170 252 AA
« 171 253 AB
¬ 172 254 AC
- 173 255 AD
® 174 256 AE
¯ 175 257 AF
° 176 260 B0
± 177 261 B1
² 178 262 B2
³ 179 263 B3
´ 180 264 B4
µ 181 265 B5
¶ 182 266 B6
· 183 267 B7
¸ 184 270 B8
¹ 185 271 B9
º 186 272 BA
» 187 273 BB

ASCII Table 73

Fortran User Guide

Character Dec Oct Hex
¼ 188 274 BC
½ 189 275 BD
¾ 190 276 BE
¿ 191 277 BF
À 192 300 C0
Á 193 301 C1
Â 194 302 C2
Ã 195 303 C3
Ä 196 304 C4
Å 197 305 C5
Æ 198 306 C6
Ç 199 307 C7
È 200 310 C8
É 201 311 C9
Ê 202 312 CA
Ë 203 313 CB
Ì 204 314 CC
Í 205 315 CD
Î 206 316 CE
Ï 207 317 CF
Ð 208 320 D0
Ñ 209 321 D1
Ò 210 322 D2
Ó 211 323 D3
Ô 212 324 D4
Õ 213 325 D5
Ö 214 326 D6
× 215 327 D7
Ø 216 330 D8
Ù 217 331 D9
Ú 218 332 DA
Û 219 333 DB
Ü 220 334 DC
Ý 221 335 DD

Character Dec Oct Hex
Þ 222 336 DE
ß 223 337 DF
à 224 340 E0
á 225 341 E1
â 226 342 E2
ã 227 343 E3
ä 228 344 E4
å 229 345 E5
æ 230 346 E6
ç 231 347 E7
è 232 350 E8
é 233 351 E9
ê 234 352 EA
ë 235 353 EB
ì 236 354 EC
í 237 355 ED
î 238 356 EE
ï 239 357 EF
ð 240 360 F0
ñ 241 361 F1
ò 242 362 F2
ó 243 363 F3
ô 244 364 F4
õ 245 365 F5
ö 246 366 F6
÷ 247 367 F7
ø 248 370 F8
ù 249 371 F9
ú 250 372 FA
û 251 373 FB
ü 252 374 FC
ý 253 375 FD
þ 254 376 FE
ÿ 255 377 FF

75

Fortran User Guide

Appendix C

Bibliography

FORTRAN 90/95

These books and manuals are useful references for the Fortran 90/95 programming
language and the floating point math format used by Absoft Pro Fortran on Linux.

Michael Metcalf and John Reid, FORTRAN 90/95 explained, Oxford University Press
(1996)

Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams, Programmer’s Guide to
Fortran90, Unicomp, Inc (1994)

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, and Brian T. Smith, Fortran Top
90, Unicomp, Inc (1994)

James F. Kerrigan, Fortran 90, O’Reilly & Associates, Inc (1993)

American National Standard Programming Language Fortran 90, X3.198-1991, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

FORTRAN 77

These books and manuals are useful references for the FORTRAN language and the
floating point math format used by Absoft Pro Fortran on Linux.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)

Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)

Loren P. Meissner and Elliot I. Organick, FORTRAN 77, Addison-Wesley Publishing
Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

J.N.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,
Inc. (1979)

Harice L. Seeds, FORTRAN IV, John Wiley & Sons (1975)

76 Bibliography

Fortran User Guide

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoffberg, FORTRAN IV, A Self-
Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions, U.S. Department
of Commerce, National Bureau of Standards (1972)

77

Fortran User Guide

Appendix D

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users of current products. They will not answer general questions about operating
systems, operating system interfaces, graphical user interfaces, or teach programming.
For further help on these subjects, please consult this manual and any of the books and
manuals listed in the bibliography.

Before contacting Technical Support, please study this manual and the language
reference manuals to be sure your problem is not covered here. Specifically, refer to the
chapter Using the Compilers in this manual. To help Technical Support provide a quick
and accurate solution to your problem, please include the following information in any
correspondence or have it available when calling.

Product Information:

Name of product, version number, and serial number
Version number of the operating system

System Configuration:

Hardware configuration (hard drive, memory, etc.)
System software release (i.e. 4.0, 3.5, etc)
Any software or hardware modifications to your system

Problem Description:

What happens?
When does it occur?
Provide a small (20 line) step-by-step example if possible.

Contacting Technical Support:

Address: Absoft Corporation
Attn: Technical Support
2781 Bond Street
Rochester Hills, MI 48309

telephone: (248) 853-0095 9am - 3pm EST
FAX (248) 853-0108 24 Hours
email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

Index

Fortran User Guide

132 column source code......................................15, 35
386, porting from ..42
Absoft address...77
ABSOFT_RT_FLAGS..46
advanced optimizations.......................................14, 28
alignment

automatically align COMMON34
array

boundary checking...18, 25
ASCII table ...71
assembly language ..6

interfacing with FORTRAN60
ATTRIBUTES directive ...22
basic optimizations ...14, 28
BLOCK=-1 specifier...30
BYTE sign extension ..32
C

function results ..56
interfacing with FORTRAN(see interfacing

FORTRAN and C)
CASE DEFAULT ...33
check array boundaries ...25
COMMON blocks from C ..59
COMMON, aligning data ...34
compiler directives..20

ATTRIBUTES directive......................................22
FIXED directive ..22
FIXEDFORMLINESIZE directive22
FREE[FORM] directive.......................................21
NAME directive ..21
NOFREEFORM directive....................................22
PACK[ON] directive ...23
PACKOFF directive ..23
STACK directive ...23

compiler options ...63
+B41, no register variables10
+B51, no fma instructions....................................10
-8, Fortran 90/95 ..35
-A, suppress alignment warnings.........................24
-B108, verify FPU stack13, 24
-B111, verify FPU stack10
-B112, disable stack alignment......................13, 25
-B18, use long branches.......................................11
-B19, Assume Pointer Aliases Exist13, 25
-B23, don't change FPU control word10
-B24, preserve FPU control word10
-C, check boundaries ...25
-c, relocatable object..6
-cpu, CPU specific optimization............................9
-D, define compiler variable27
-d, one trip DO loops ...31
-e, floating point precision...................................32
-ea , stop on error...12
-ej, one trip DO loops ..17
-en, non-standard usage12
-ep, demote Double Precision..............................17
-eq, allow greater than 100 errors12
-eR, default recursion ..12
-et, exception traceback ...8
-f, case fold ..30, 37
-f, case folding ...59

-f, fixed source form.. 15
-f, freed source form.. 15
-g, debugging information......................... 7, 13, 26
-g, Fx debugging ... 37
-g77, g77 compatibility ... 8
-H, max lines to unroll .. 29
-h, unroll count.. 29
-i, integer sizes .. 16, 31
-I, set INCLUDE paths.. 27
-K, escape sequences... 33
-L, library path specification................................. 7
-l, library specification .. 7
-m, suppress messages .. 12
-M, suppress warning number............................. 12
-MS7D, Microsoft directives 16
-N1, static storage ... 30, 33
-N102, zero extend INTEGER*1........................ 31
-N109, case fold .. 30
-N111, debugging structures 26
-N112, IBM VS Free-Form................................. 35
-N113, floating point sizes 17, 33
-N114, warnings for undeclared variables 34
-N115, pad source lines....................................... 34
-N116, BLOCK DATA code section 25
-N124, procedure trace.................................. 13, 25
-N16, UNIT specifier .. 33
-N18, function decomposition............................. 28
-N2, double precision.. 32
-N20, left-to-right.. 32
-N22, set Common name..................................... 32
-N26, set big-endian.. 31
-N26, set little-endian.. 31
-N3, record lengths.. 30
-N32, non-ANSI.. 24
-N33, don’t align structure fields; 33
-N34, align COMMON 34
-N4, CASE DEFAULT 33
-N41, evaluate constant functions 29
-N5, treat DATA as constants 28
-N51, 32 bit RECL.. 31
-N52, check syntax only 24
-N57, align structure fields to 2-byte boundaries;

... 33, 34
-N58, align structure fields to 4-byte boundaries;34
-N59, align structure fields to 8-byte boundaries;34
-N7, sign extend .. 32
-N86, optimize address expressions 29
-N90, CHARACTER argument parameters 25
-o, executable file name .. 7
-O1, basic optimizations 14, 28
-O2, advanced optimizations............................... 28
-O2, normal optimizations 14
-O3, advanced optimizations............................... 14
-p, MODULE path .. 18
-P, profiling information 14, 26
-q, quiet ... 24
-Rb, check array conformance 18
-Rb, check boundaries... 18
-round=, FPU rounding mode 8
-Rp, check pointers ... 19
-Rs, check substrings... 18

Index

Fortran User Guide

-S, assembly language ...6
-s, static storage17, 30, 37
-T, max internal handle18, 26
-t, temporary strings18, 34
-trap=, FPU exception handling.............................9
-U, loop unrolling ..29
-u, undefine symbol...7
-v , show progress..11, 24
-V , show version...11
-V, VAX Tab-Format ..35
-W, line length...15
-w, suppress compiler warnings11, 24
-W, wide format ..35
-x , disable compiler directive17
-x, conditional compilation..................................26
-X, linker options...7
-YCFRL=1, CHARACTER argument parameters

...19
-YCOM_NAMES, COMMON block case19
-YCOM_PFX, COMMON block prefix19
-YCOM_SFX, COMMON block suffix19
-YCSLASH=1, escape sequences........................16
-YDEALLOC, cache control...............................20
-YEXT_NAMES, external symbol case..............19
-YEXT_PFX, external symbol prefix..................19
-YEXT_SFX, external symbol suffix19
-YNDFP, type elements.......................................16
-YPEI, pointers equivalent to integers.................20
-YVF_CHAR, DVF/CVF CHARACTER16

compiler version ...11
complex data types

equivalent declarations in C52
conditional compilation ..26
conditional compilation variables27
constant functions ...29
constant propagation...28
continuation lines..39
conventions used in the manual2
data initialization to zero ..30
DATA treated as constants28
DATE subroutine..38
debugging ...26, 61

array bounds checking...25
conditional compilation26

debugging information....................................7, 13, 26
display compiler alignment warning messages.........24
divide by zero exceptions ...49
DO loops

one trip ..31
DO Loops ...17
documentation conventions ..2
double precision

functions ..32
enabling the exception ..49
errors...12

at runtime...40
escape sequences in strings.......................................33
exceptions ...8

divide by zero ..49
operand error ...49
overflow ..49

executable file name ...7
extensions

key Microsoft FORTRAN 41
key Sun FORTRAN ones.................................... 42
key VAX FORTRAN ones 38
key VS FORTRAN ones..................................... 40

extensions to FORTRAN 77 2
external procedure name .. 46
FIXED directive... 22
FIXEDFORMLINESIZE directive 22
floating point

unit .. 50
floating point unit

exception handling.. 49
rounding direction... 49

fold to lower case ... 30
FORM='BINARY' specifier..................................... 41
Fortran 77

introduction... 1
options .. 23

FORTRAN 77 extensions2, 26, 30, 31, 33, 34, 35
COMPLEX size .. 33
conditional compilation 26
escape sequences .. 33
Fortran 90/95 Free Source Form......................... 35
IBM VS Free Form... 35
lower case ... 30
one trip DO ... 31
REAL size... 33
REPEAT

function.. 34
upper case ... 30
VAX Tab-Format.. 35
wide source format.. 35

Fortran 90/95
options .. 11

Fortran 90/95 Fixed Source Form 15
Fortran 90/95 Free Source Form 15, 35
FORTRAN math routines

calling from C... 58
FPU exception handling;.. 9
FPU register variables .. 10
FPU rounding mode; .. 8
FREE[FORM] directive ... 21
Fsplit utility tool... 49
function

call to C from FORTRAN................................... 56
call to FORTRAN from C................................... 57
decomposition... 28

g77 ... 52, 53
g77 compatibility ... 8
gcc.. 52, 53
graying of text .. 2
IDATE subroutine.. 38
IEEE floating point math ... 50
Intel 386, porting from ... 42
Intel options ... 9
interfacing FORTRAN and C

calling FORTRAN math routines 58
compatible type declarations 52
function call to C from FORTRAN 56
function call to FORTRAN from C 57
function results.. 56
LOC function .. 56
passing an array .. 56

Index

Fortran User Guide

passing pointers ...54
passing strings..57
passing values ..53
reference parameters..53

passing to C ..54
passing to FORTRAN53

VAL function...55
value parameters ..55

intrinsic functions
LOC...56
math ...58
VAL...55

italicized text, defined...2
Language Systems Fortran..43
left-to-right operator evaluation32
library path specification ..7
library specification ..7
LOC, intrinsic function ...56
LONG sign extension ...32
loop unrolling..29
MacFortran ...43
MacFortran II..43
MacFortran/020 ..43
math routines

FORTRAN ..58
metacommands, Microsoft FORTRAN41
Microsoft FORTRAN

metacommands ..41
porting from...40

MODULE path ...18
MS-DOS, porting from ...40
NAME directive..21
naming conventions ..58
NOFREEFORM directive...22
non ANSI warnings...24
normal optimizations ..14
one trip DO ...31
operand error exceptions...49
operator evaluation ...32
optimization ..14, 27

constant propagation..28
function decomposition28

optimizations
loop unrolling ..29

options...63
options, manual convention ..2
other porting issues ...44
overflow exceptions ..49
PACK[ON] directive ..23
PACKOFF directive..23
porting code ..37

doesn’t run correctly;...40
from Intel 386 ..42
from Microsoft FORTRAN40

from MS-DOS... 40
from SCO Unix ... 42
from Sparc... 42
from Sun FORTRAN .. 42
from VAX FORTRAN.. 37
from VS FORTRAN ... 40

PowerPC options .. 10
procedure naming conventions................................. 59
profiling.. 14, 26, 61
qualifiers, VAX FORTRAN..................................... 39
RAN function ... 38
RECL

for 32-bit words... 31
relocatable object ... 6
road maps... 2
runtime error messages... 40
SCO Unix, porting from... 42
SECNDS subroutine... 38
show compiler progress...................................... 11, 24
source line length ... 15
Sparc, Absoft compiler for 42
Sparc, porting from .. 42
square brackets, defined ... 2
STACK directive.. 23
standard output

suppressing.. 24
static storage... 17, 30
string length.. 18, 34
strings

passing FORTRAN to C 57
STRUCTURE fields, aligning............................ 33, 34
Sun FORTRAN, porting from.................................. 42
support.. 77
suppress list of compiler warning messages....... 11, 24
TABSIZE variable.. 50
technical support .. 77
TIME subroutine .. 38
traceback .. 8
tracing... 13, 25
undefine symbol ... 7
underlined text, defined.. 2
UNIT specifier ... 33
use long branches ... 11
VALUE statement .. 55
VAX FORTRAN

porting from .. 37
qualifiers ... 39

VAX Tab-Format source.. 35
VS FORTRAN, porting from................................... 40
warn of non-ANSI usage.. 24
wide source format ... 35
WORD sign extension.. 32
x86 options ... 9
Y2K bug... 3

	Pro Fortran V8.0 User Guide
	Table of Contents
	Chapter 1 Introduction
	INTRODUCTION TO ABSOFT PRO FORTRAN
	Absoft Fortran 90/95
	Absoft FORTRAN 77

	CONVENTIONS USED IN THIS MANUAL
	ROAD MAPS
	Fortran Road Maps

	YEAR 2000 PROBLEM
	Fortran 90/95 DATE_AND_TIME Subroutine
	Unix Compatibility Library

	Chapter 2 Using the Compilers
	COMPILING PROGRAMS
	FILE NAME CONVENTIONS
	COMPILER PROCESS CONTROL
	Generate Assembly Language (-S)
	Generate Relocatable Object (-c)
	Passing Options To The Linker
	Executable File Name (-o name)
	Library Specification (-l)
	Library Path Specification (-L)
	Undefine A Symbol (-u)
	Linker Options (-X)

	Generate Debugging Information (-g)
	Enable Exception Traceback (-et)
	g77 Compatibility (-g77)

	FPU CONTROL OPTIONS
	FPU Rounding Mode
	FPU Exception Handling

	X86 PROCESSOR SPECIFIC OPTIONS
	CPU Specific Optimizations (-cpu:type)
	No Register Variables (+B41)
	Don't change FPU control word (-B23)
	Preserve FPU control word (-B24)
	Verify FPU Stack (-B111)

	POWERPC PROCESSOR SPECIFIC OPTIONS
	Don’t generate FMA instructions \(+B51\)
	Use long branches (-B18)

	ABSOFT FORTRAN 90/95 OPTIONS
	Compiler control
	Show progress (-v)
	Output Version number (-V)
	Suppress warnings (-w)
	Warn of non-standard usage (-en)
	Warning level (-mnn)
	Suppress Warning number(s) (-Mnn)
	Stop on error (-ea)
	Allow greater than 100 errors (-dq)
	Default Recursion (-eR)
	Append Underscore To Names (-B108)
	Disable Stack Alignment (-B112)
	Procedure Trace (-B80)
	Assume Pointer Aliases Exist (-B19)
	Generate Debugging Information (-g)
	Generate Profiler Information (-P)

	Optimizations
	Basic Optimizations (-O1)
	Normal Optimizations (-O2)
	Advanced Optimizations (-O3)

	Compatibility
	Source Formats
	Free-Form (-f free)
	Fixed-Form (-f fixed)
	Alternate Fixed form (-f alt_fixed)
	Fixed line length (-W nn)

	Escape Sequences in Strings (-YCSLASH=1)
	No Dot for Percent (-YNDFP=1)
	MS Fortran 77 Directives (-YMS7D)
	DVF/CVF Compatible CHARACTER arguments (-YVF_CHAR)
	Integer Sizes (-i2 and -i8)
	Demote Double Precision to Real (-dp)
	Promote REAL to REAL(KIND=8) (-N113)
	One trip DO loops (-ej)
	Static storage (-s)
	Disable compiler directive (-xdirective)
	Max Internal Handle (-T nn)
	Temporary string size (-t nn)
	Module File Path(s) (-p path)
	Check Array Boundaries (-Rb)
	Check Array Conformance (-Rc)
	Check Substrings (-Rs)
	Check Pointers (-Rp)
	Character Argument Parameters (-YCFRL={0|1})
	External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS})
	External Symbol Prefix (-YEXT_PFX=string)
	External Symbol Suffix (-YEXT_SFX=string)
	COMMON Block Name Character Case (-YCOM_NAMES={UCS | LCS})
	COMMON Block Name Prefix (-YCOM_PFX=string)
	COMMON Block Name Suffix (-YCOM_SFX=string)
	Cache Control (-YDEALLOC= {MINE | ALL | CACHE})
	Pointers Equivalent to Integers (-YPEI={0|1})

	Absoft Fortran 90/95 Compiler Directives
	NAME Directive
	FREE[FORM] Directive
	FIXED Directive
	NOFREEFROM Directive
	FIXEDFORMLINESIZE Directive
	ATTRIBUTES Directive
	PACK[ON] Directive
	PACKOFF Directive
	STACK Directive

	ABSOFT FORTRAN 77 OPTIONS
	Compiler control
	Show progress (-v)
	Quiet Compilation (-q)
	Suppress warnings (-w)
	Suppress alignment warnings (-A)
	Warn of non-ANSI usage (-N32)
	Check Syntax Only (-N52)
	Append Underscore To Names (-B108)
	Character Argument Parameters (-N90)
	Disable Stack Alignment (-B112)
	BLOCK DATA Code Section (-N116)
	Procedure Trace (-B80)
	Assume Pointer Aliases Exist (-B19)
	Check array boundaries (-C)
	Generate Debugging Information (-g)
	Info for unused structures (-N111)
	Generate Profiler Information (-P)
	Conditional compilation (-x)
	Max Internal Handle (-T nn)
	Define Compiler Directive (-Dname[=value])
	Set Include Paths (-I)

	Optimizations
	Basic Optimizations (-O1)
	Advanced Optimizations (-O2)
	DATA treated as constants (-N5)
	Function decomposition (-N18)
	Evaluate Constant Functions (-N41)
	Loop unrolling (-U and -h nn and -H nn)
	Optimize Address Expressions (-N86)

	Compatibility
	Folding to lower case (-f)
	Folding to upper case (-N109)
	Static storage (-s)
	Use record lengths in I/O (-N3)
	RECL Defines 32-bit words (-N51)
	One-trip DO loops (-d)
	Integer Sizes (-i2 and -i8)
	Zero extend INTEGER*1 (-N102)
	Set Big-Endian (-N26)
	Set Little-Endian (-N27)
	Set COMMON block name (-N22)
	Evaluate left-to-right (-N20)
	Double precision transcendentals (-N2)
	Maintain Floating Point Precision (-e)
	Sign extend BYTE() & WORD() (-N7)
	DATA variables are static (-N1)
	Promote REAL and COMPLEX (-N113)
	Escape sequences in strings (-K)
	Allows CASE without DEFAULT (-N4)
	Allows UNIT= without FMT= (-N16)
	Pack STRUCTURE elements (-N33)
	Align STRUCTURE fields to one byte boundaries (-N56)
	Align STRUCTURE fields to two byte boundaries (-N57)
	Align STRUCTURE fields to four byte boundaries (-N58)
	Align STRUCTURE fields to eight byte boundaries (-N59)
	Align COMMON variables (-N34)
	Temporary string size (-t nn)
	Warnings for Undeclared Variables (-N114)
	Pad Source Lines (-N115)
	Source Formats
	Fortran 90/95 Free-Form (-8)
	IBM VS Free Form (-N112)
	VAX Tab-Format (-V)
	Wide format (-W)

	Chapter 3 Porting Code
	PORTING CODE FROM VAX
	Compile Time Options and Issues
	Runtime Issues

	PORTING CODE FROM IBM VS FORTRAN
	Compile-time Options and Issues
	Run-time Issues

	PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)
	Compile-time Options and Issues

	PORTING CODE FROM SUN WORKSTATIONS
	PORTING CODE FROM INTEL 386/486/PENTIUM COMPUTERS
	PORTING CODE FROM MACINTOSH SYSTEMS
	Language Systems Fortran
	Other Absoft Macintosh Compilers

	DISTRIBUTION ISSUES
	OTHER PORTING ISSUES
	Memory Management
	Dynamic Storage
	Static Storage

	Naming Conventions
	Procedure Names
	COMMON Block Names

	File and Path Names
	Tab Character Size
	Runtime Environment
	Floating Point Math Control
	Rounding Direction
	Exception Handling

	FSPLIT - SOURCE CODE SPLITTING UTILITY

	Chapter 4 Interfacing With Other Languages
	INTERFACING WITH C
	Fortran Data Types in C
	Required Compiler Options
	Rules for Linking
	Passing Parameters Between C and Fortran
	Reference parameters
	Value parameters
	Array Parameters
	Function Results
	Passing Strings to C

	Calling Fortran math routines
	Naming Conventions
	Procedure Names

	Accessing COMMON blocks from C
	Declaring C Structures in Absoft Pro Fortran

	INTERFACING WITH ASSEMBLY LANGUAGE
	The Fortran Stack Frame
	Function Results

	DEBUGGING
	Compiler Options

	PROFILING
	Compiler Options

	Appendix A Absoft Compiler Option Guide
	ABSOFT PRO FORTRAN COMPILER OPTIONS
	FPU CONTROL OPTIONS
	X86 PROCESSOR SPECIFIC OPTIONS
	POWERPC PROCESSOR SPECIFIC OPTIONS
	FORTRAN 90/95 CONTROL OPTIONS
	FORTRAN 90/95 OPTIMIZATION OPTIONS
	FORTRAN 90/95 SOURCE FORMAT OPTIONS
	FORTRAN 90/95 COMPATIBILITY OPTIONS
	FORTRAN 77 CONTROL OPTIONS
	FORTRAN 77 OPTIMIZATION OPTIONS
	FORTRAN 77 SOURCE FORMAT OPTIONS
	FORTRAN 77 COMPATIBILITY OPTIONS

	Appendix B ASCII Table
	Appendix C Bibliography
	FORTRAN 90/95
	FORTRAN 77

	Appendix D Technical Support

