Positron energy calibration in the \textit{TWIST} experiment.

A. Gaponenko
on behalf of the \textit{TWIST} collaboration.

- Energy scale in \textit{TWIST}
- Sensitivities of Michel parameters
- Calibration method
- Implementation & results
- Conclusion
Michel spectrum.

The middle region can not be seen by TWIST.
Energy scale in TWIST

- **Energy scale** β: defines a distortion of the reconstructed spectrum in the form
 \[E \rightarrow (1 + \beta) E \]

- **Upstream** and **downstream** parts of the detector will be calibrated separately $\Rightarrow \beta_{up}$ and β_{dn}.

- **Systematic error** on a Michel parameter due to energy scale:
 \[\Delta \rho = \frac{\partial \rho}{\partial \beta} \Delta \beta \]

 ▶ **Sensitivity** $\partial \rho / \partial \beta = ?$

 ▶ **How well** can we measure β?
Sensitivity of Michel parameters to energy scale

- **Method:** generate a MC Michel spectrum. Fit it with a distorted function fixing different β_{up} and β_{dn}
 \[\frac{\partial \rho}{\partial \beta_{up}}, \frac{\partial \rho}{\partial \beta_{dn}}, \frac{\partial \eta}{\partial \beta_{up}}, \frac{\partial \eta}{\partial \beta_{dn}} \ldots \]

- **Realization:**
 - 10^9 decays of 100% polarized muons simulated.
 - First order radiative correction included in the generation and in the fitting.
 - Log likelihood fit for 4 Michel parameters and normalization in the upstream and downstream regions simultaneously. Fit region is
 \[[0.4 \leq x \leq 0.97] \times [0.5 \leq |\cos(\theta)| \leq 0.98] \]
 - Distortion: 5 steps in β_{up} between $-30 \cdot 10^{-4}$ and $+30 \cdot 10^{-4}$.
 Same for the β_{dn}.
Deviations in Michel parameters vs β_{up}

- ρ
 - $p_0 = -0.00013$
 - $p_1 = 0.049$

- ξ
 - $p_0 = 5.7e-05$
 - $p_1 = -2.8$

- η
 - $p_0 = -0.0089$
 - $p_1 = 11$

- δ
 - $p_0 = -2.5e-05$
 - $p_1 = 1.9$
Sensitivities—the result

For the fit region

\[0.4 \leq x \leq 0.97 \times 0.5 \leq |\cos(\theta)| \leq 0.98 \]:

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\frac{\partial}{\partial \beta_{up}})</th>
<th>(\frac{\partial}{\partial \beta_{dn}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>0.05</td>
<td>1.</td>
</tr>
<tr>
<td>(\eta)</td>
<td>11.</td>
<td>-1.9</td>
</tr>
<tr>
<td>(\xi)</td>
<td>-2.8</td>
<td>-0.9</td>
</tr>
<tr>
<td>(\delta)</td>
<td>1.9</td>
<td>-1.</td>
</tr>
</tbody>
</table>
The energy calibration method

- The sharp edge of the Michel spectrum at the upper kinematic limit provides a natural calibration point.

- Positron energy loss affects the position of the reconstructed spectrum edge along with the energy scale.

- The planar detector geometry is essential. For that geometry the following equation for the edge of reconstructed spectrum is rigorously valid:

\[E_{edge} = (1 + \beta) \left(E_{\text{max}} - \frac{\alpha}{|\cos(\theta)|} \right) \]

- Having determined \(E_{edge} \) for different angles we can find the constants \(\alpha \) and \(\beta \) by fitting the equation.
Fitting the end point—1

- **Shape** of the reconstructed spectrum edge is mainly defined by the resolution function.

- **Approximation:** theoretical Michel spectrum convoluted with a Gaussian.
 - No analytical expression available.
Fitting the end point—2

- **Implementation:**
 - Log likelihood fits with 3 free parameters: E_{edge}, σ and a normalization.
 - $\cos(\theta)$ for an angular bin $[\theta_1, \theta_2]$ is fixed at the mean value $(\cos(\theta_1) + \cos(\theta_2))/2$

- **Testing:**
 - Data sample corresponding to 10^9 total decays of 100% polarized muons.
 - Generated energy smeared with a Gaussian, $\sigma = 0.005$ (0.26 MeV)
 - Energy distributions in 4° angular bins between 10° and 58° and symmetrically upstream were produced and fitted with the convolution.
End point fit examples

![Graphs showing fitting results for different data bins with chi-squared and degrees of freedom values.](image-url)
Downstream energy calibration

\[x_{\text{edge}} \text{ on } 1/\cos(\theta) \]

\[\text{Chi2 / ndf } = 6.526 / 10 \]

\[\beta = -2.521 \times 10^{-5} \pm 9.634 \times 10^{-5} \]

\[\alpha = -1.364 \times 10^{-5} \pm 6.454 \times 10^{-5} \]

\[\sigma \text{ on } 1/\cos(\theta) \]

\[\chi^2/\text{ndf of the end point fits} \]

Horizontal scale is \(1/\cos(\theta) \).
Upstream energy calibration

\[x_{\text{edge}} \text{ on } 1/\cos(\theta) \]

\[\begin{align*}
\beta &= 3.157 \times 10^{-5} \pm 2.466 \times 10^{-5} \\
\alpha &= -1.629 \times 10^{-5} \pm 1.792 \times 10^{-5}
\end{align*} \]

\[\text{Chi2 / ndf = 5.024 / 10} \]

\[\sigma \text{ on } 1/\cos(\theta) \]

\[\chi^2/\text{ndf of the end point fits} \]

Horizontal scale is \(1/\cos(\theta)\).
Energy calibration summary

- **Precision** of the upstream energy scale fit β_{up}
is $0.25 \cdot 10^{-4}$, for β_{dn} it’s $0.96 \cdot 10^{-4}$. The
numbers were obtained assuming that the polarization of the decaying muons is perfect.

- **Actual data set** in addition to the surface muons contains also cloud muons. Not doing
the RF cut brings in the analysis 5% of muons with the opposite polarization.

- **For that subsample**

$$\beta_{dn} = \sqrt{\frac{1}{0.05}} \times 0.25 \cdot 10^{-4} \approx 1.1 \cdot 10^{-4}.$$

- **Intrinsic** to the data set energy calibration which combines the surface and the cloud
muons gives precision for $\beta_{up} \pm 0.25 \cdot 10^{-4}$ and for $\beta_{dn} \pm 0.72 \cdot 10^{-4}$.
Conclusion

- **Sharp edge** of the Michel spectrum at the upper kinematic limit provides a natural calibration point.

- **Planar detector design** makes possible an **exact** account of the edge shift due to the positron energy loss.

- **A calibration** can be obtained which is **intrinsic** to the physics data sample. Systematic errors due to the e-scale uncertainty with that calibration are (in 10^{-4} units):
 \[
 \Delta \rho = \pm 0.7 \quad \Delta \eta = \pm 3.
 \]
 \[
 \Delta \xi = \pm 1. \quad \Delta \delta = \pm 0.9
 \]

- **In addition**, a **better** calibration can be obtained by taking data using a beam with low muon polarization.
Additional slides.
Downstream calibration with fixed α

Amount of material is fixed: $\alpha_{up} + \alpha_{down} = \text{const}$

- Make a measurement of the sum in a dedicated run with low muon polarization.

- For physics data:
 - Fit α_{up}, β_{up}.
 - Fix α_{down} at a known value and do a single parameter fit for β_{dn} \Rightarrow much smaller error.
Deviations in Michel parameters vs β_{dn}

\[\rho \]
- $p_0 = -0.00015$
- $p_1 = 0.99$

\[\xi \]
- $p_0 = 7.8\times10^{-5}$
- $p_1 = -0.88$

\[\eta \]
- $p_0 = -0.0096$
- $p_1 = -1.9$

\[\delta \]
- $p_0 = -5.3\times10^{-5}$
- $p_1 = -1$
Dependence of sensitivities to β_{up} on fit region

- $d\rho/d\beta$
- $0.1 \times d\eta/d\beta$
- $d\xi/d\beta$
- $d\delta/d\beta$

Graphs showing the dependence of sensitivities on fit regions.
Dependence of sensitivities to β_{dn} on fit region

- $\frac{d\rho}{d\beta}$
- $0.1 \times \frac{d\eta}{d\beta}$
- $\frac{d\xi}{d\beta}$
- $\frac{d\delta}{d\beta}$