TWIST A Precision Measurement of Muon Decay at TRIUMF

Peter Kitching

TRIUMF/University of Alberta

TWIST Collaboration

- Physics of TWIST
- Introduction to the Experiment
- Current Status

TRIUMF WEAK INTERACTION SYMMETRY TEST

- Uses intense "Surface Muon" beam of polarised muons from pions decaying at rest on surface of production target
- Incoming muon is tracked and stopped in thin, planar target
- Decay positron is tracked through 2T uniform field with a symmetric stack of high precision, low mass, planar drift chambers

Muon Decay in a Model-Independent Form

The muon decay matrix element can be written as:

$$\frac{4G_F}{\sqrt{2}}\sum_{\substack{\gamma=S,,T\\\varepsilon,\mu=,L}} g^{\gamma} \ \langle \bar{e}_{\varepsilon} | \mathsf{\Gamma}^{\gamma} | \nu_e \rangle \langle \bar{\nu}_{\mu} | \mathsf{\Gamma}_{\gamma} | \mu_{\mu} \rangle$$

with 19 real-valued parameters and one overall phase. In the Standard Model, $g_{LL}^{V} = 1$ and all others are zero.

The right-handed coupling of the muon can be written in terms of these parameters as:

$$Q_R^{\mu} = \frac{1}{4} |g_{LR}^S|^2 + \frac{1}{4} |g_{RR}^S|^2 + |g_{LR}^V|^2 + |g_{RR}^V|^2 + 3|g_{LR}^T|^2$$

Muon Decay and the Michel Parameters

The muon decay rate can also be written in terms of the Michel parameters. If you neglect the electron mass and radiative corrections, you obtain:

$$\frac{d^2\Gamma}{x^2 dx d(\cos\theta)} \propto 3 - 3x + \frac{2}{3}\rho(4x - 3) + \frac{P_{\mu}\xi}{3}\cos\theta\left[(1 - x) + \frac{2}{3}\delta(4x - 3)\right]$$

with:

$$\rho = 0.7518 \pm 0.0026$$

$$\eta = -0.007 \pm 0.013$$

$$\delta = 0.7486 \pm 0.0026 \pm 0.0028$$

$$P_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$$

$$P_{\mu}\frac{\xi\delta}{\rho} > 0.99682 \ (90\% CL)$$

Goals of TWIST

- Search for new physics through measurements of ρ , δ , and $P_{\mu}\xi$ to a few parts in 10⁴.
- Model-independent limit on right-handed muon coupling:

$$Q_R^{\mu} = \frac{1}{2} \left[1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right]$$

• In left-right symmetric models:

M13 Secondary Beamline at TRIUMF

TWIST Wire Chamber Modules

- DCs: 80 wires/plane DME
- MWPCs: 160 wires/plane CF₄ iso-C₄H₁₀
- All wires 15 μm W(Au)
- 2, 4 or 8 planes per module

TWIST Wire Chambers

- 44 drift chambers and 12 MWPCs
- Very thin -- only $\sim 5 \times 10^{-5} X_0$ per chamber
- ~ 5000 wires positioned with ~ 3 μ m accuracy
- Longitudinal and transverse distances known to < 5 parts in 10⁵

Analysis Strategy

If the decay rate is written as a function of:

 $\rho = \rho_0 + \Delta \rho$ $\eta = \eta_0 + \Delta \eta$ $P_{\mu}\xi = P_{\mu}\xi_0 + \Delta P_{\mu}\xi$ $\delta = \delta_0 + \Delta \delta$

It can be made linear in $\Delta \rho$, $\Delta \eta$, $\Delta P_{\mu} \xi$, and $\Delta \delta$.

This provides the basis for our **blind analysis scheme**. We will fit our measured spectrum to a sum of a **GEANT "standard" spectrum**, produced with **unknown** ρ_0 , η_0 , $P_{\mu}\xi_0$, and δ_0 , together with GEANT distributions thrown according to:

 $d\Gamma/d(\Delta\rho), \ d\Gamma/d(\Delta\eta), \ d\Gamma/d(\Delta P_{\mu}\xi), \ \text{and} \ d\Gamma/d(\Delta\delta).$

First Physics Run: Sept-Dec, '02

- Goal: Determine ρ and δ to 10-3.
- Recorded ~6 x 10⁹ events to tape. Note that 3 x 10⁸ events suffice to measure ρ and δ with a statistical precision of ~6 x 10⁻⁴.
- Basic philosophy: If we might be sensitive to a particular systematic effect, can we take data in a configuration that will make it "really big"?
- Recorded many separate 3 x 10⁸ event data sets under various experimental conditions to investigate:
 - Varying beam polarization ("Surface" vs "cloud" muon beams)
 - Beam line and detector performance (Vary beam line, detector, time)
 - Upstream-downstream symmetry (Vary stopping point, material)
 - Momentum scale (Vary solenoid field)
 - Analysis codes (Vary trigger rate)
 - GEANT simulation quality (vary muon stop location, beam positron data)

Validating the Muon Stopping Distribution in GEANT

Muon Stops/RL vs RL (units of 10^{-5})

- Began with muons stopping in the center of the target in both experiment and Monte Carlo
- Inserted an upstream mylar degrader with the same known thickness in both
- Measured the new stopping distribution in the upstream half of the detector stack

Validating the Positron Interactions in GEANT

Energy loss

Multiple scattering

- Stop muons near the upstream end of the system
- Track decay positrons independently before and after the target
- Compare the two reconstructions
- Measures energy loss and multiple scattering in data and GEANT

Classifying Events: What Really Happened?

Comparing Cloud Muons to Surface Muons

Cloud vs. Standard A

More Cloud Muons vs. Surface Muons

More Cloud Muons vs. Surface Muons

DCHV 1850V vs. Standard A

Unnormalized ratio of histograms, (DCHV 1850V)/(Standard A)

Events in Standard A data set 1481827 Events in DCHV 1850V data set 5472748

DCHV 1850V vs. Standard A

Unnormalized ratio of histograms, (DCHV 1850V)/(Standard A)

Events in Standard A data set 3957969 Events in DCHV 1850V data set 14454754

Atmospheric Pressure and Muon Stopping Location

High Density vs. Low

Additional Material Downstream of the Detector

Endpoint Fits for Momentum Calibration Check

Conclusions

- TWIST is the first experiment ever to measure the full muon decay energy-angle spectrum simultaneously.
- The ultimate goal of TWIST is to improve our knowledge of ρ , δ , and $P_{\mu}\xi$ by over an order of magnitude in each case. We may also improve our knowledge of η . This will give us model-independent sensitivity to right-handed vector bosons with masses up to 800 GeV in left-right symmetric theories, plus sensitivity to right-handed muon coupling through scalar or tensor interactions.
- The data in hand should provide measurements of ρ and δ to ~10⁻³.
- We hope to have the existing data analyzed by the end of this year.