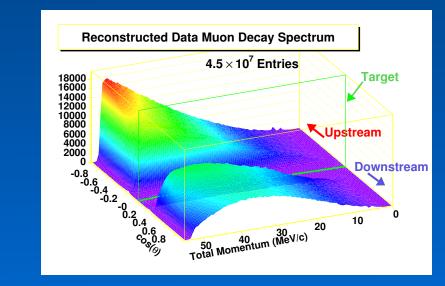
Estimating P_{μ} for the $\tau w \tau s \tau$ **Measurement of** $P_{\mu\xi}$

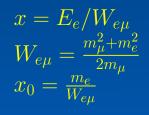
Blair Jamieson Ph.D. Candidate

University of British Columbia for the TWIST Collaboration

LLWI'04 February 16-21, 2004

Overview

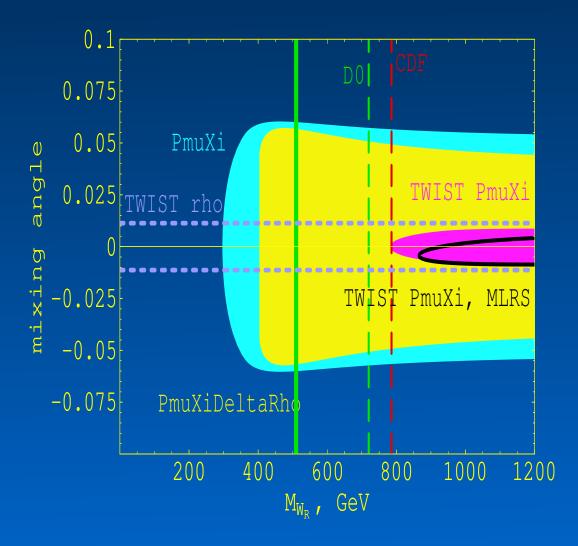

- What is $P_{\mu}\xi$?
- Some Physics motivation for $\mathsf{P}_{\mu}\xi$
- Initial P_{μ} and Depolarization Effects
- Statement of the problem
- Review of Spin
- Spin propogation in Magnetic Fields
- Overall TWIST Muon Depolarization estimate


What is $P_{\mu}\xi$?

- P_{μ} is the polarization of the muon, ξ is asymmetry in angle of decay positrons from normal μ decay
- Standard Model (V-A) predicts $\xi=1$ and $\mathsf{P}_{\mu}=1$

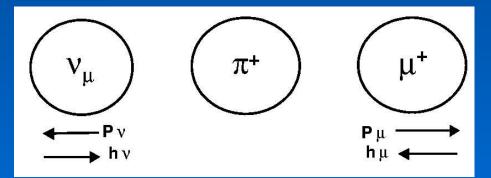
$$\frac{d^2\Gamma}{dxd\cos\theta} \propto x^2 - x^3 + \frac{2}{9}\rho(4x^3 - 3x^2) + \eta x_0(x - x^2) + \frac{1}{3}P_\mu\xi\cos\theta(x^2 - x^3 + \frac{2}{3}\delta(4x^3 - 3x^2))$$

(1)

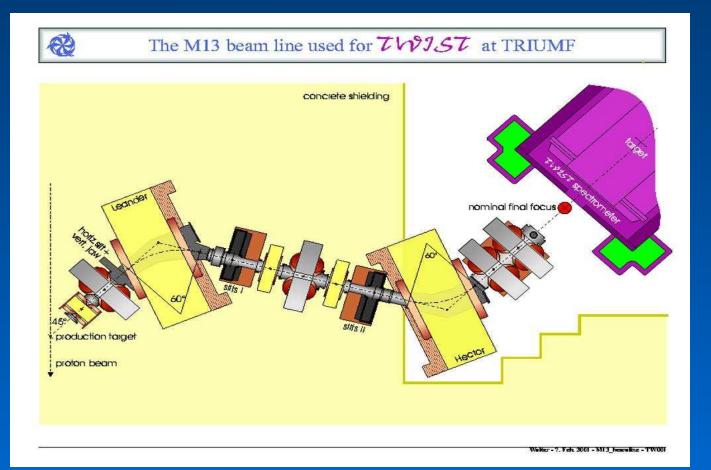

Physics and Motivation for $P_{\mu}\xi$

- Best Measurements:
 - $-P_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$ (Beltrami et. al., PL B194 326)
 - $P_{\mu}\xi\delta/\rho > 0.99682$, 90% conf. level (Jodidio et.al., PR **D34** 1967, PR **D37** 237)
- ξ and δ together give limit on probability of right-handed muon decaying into any handed positron:

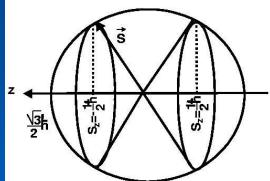
$$Q_R^{\mu} = \frac{1}{2} \left(1 + \frac{1}{3}\xi - \frac{16}{9}\xi\delta\right)$$
(2)


• In Left-right symmetric model, $P_{\mu}\xi$ sets limit on W_R mass (ϵ) and left/right mixing parameter (ζ):

$$P_{\mu}\xi = 1 - 2\epsilon^{2} - 2\zeta^{2} - 2\epsilon^{2}\left(\frac{V_{ud}^{R}}{V_{ud}^{L}}\right)^{2} - \epsilon\zeta\frac{V_{ud}^{R}}{V_{ud}^{L}}$$
(3)


Initial P_{μ} and Depolarization Effects

- Muon from π decay at rest has spin opposite direction from momentum since:
 - Standard Model ν is left handed
 - Conservation of Angular Momentum
- Depolarization Effects:
 - Precession of Spin in Magnetic Fields
 - * Beam Divergence
 - * Radial Fringe Fields
 - Muonium Formation in Non-metals


Statement of the Problem

• What is the average ΔP_{μ} as μ goes from production to stopping?

Review of Spin 1/2 Leptons

- Spin "angular momentum" is a fundamental property of a particle
- Magnetic dipole moment due to spin is: $\vec{M} = -\frac{ge\hbar}{2m}\vec{S} = -g\mu_B\frac{\vec{S}}{\hbar}, \ \mu_B = 5.788381749(43) \times 10^{-11} MeV/T$ i $g \approx 2$. due to relativistic kinematics, called Thomas Precession
- Torque $(\vec{\tau})$, and Force (\vec{F}) due to the intrinsic spin are: $\vec{\tau} = \vec{M} \times \vec{B}$ $\vec{F} = \nabla(\vec{M} \cdot \vec{B})$
- Quantization of spin
- Spin must be 1/2 (ie 2s+1=2)

- Spin precesses about \vec{B} , along direction of B (z-axis): $S_z = \pm \frac{\hbar}{2}$
- Time average of Spin perpendicular to B is zero

Non-Relativistic Propogation of Spin in Uniform B

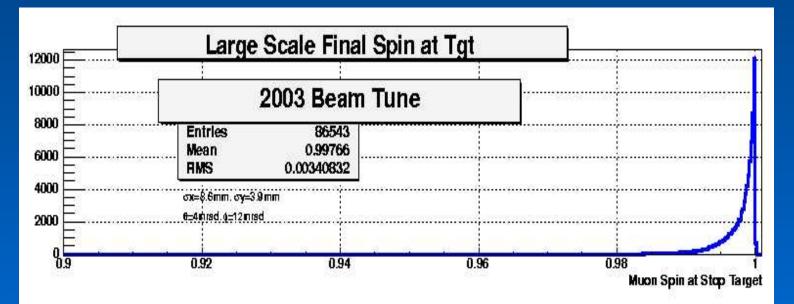
• The equation for propogation of spin in a uniform magnetic field is:

$$\frac{d\vec{S}}{dt'} = \frac{ge}{2mc}\vec{S}\times\vec{B'} \tag{4}$$

- Prime means defined in rest frame of the particle, \vec{S} is the spin in that frame
- For perfect alignment of \vec{S} and \vec{B} :

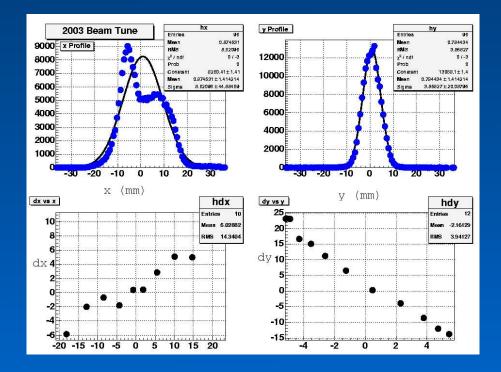
$$S_x = \frac{\hbar}{\sqrt{2}} \sin \gamma_z t$$
$$S_y = \frac{\hbar}{\sqrt{2}} \cos \gamma_z t$$
$$S_z = -\frac{\hbar}{2}$$
$$\gamma_z = \frac{ge}{2mc} B_z$$

(5)

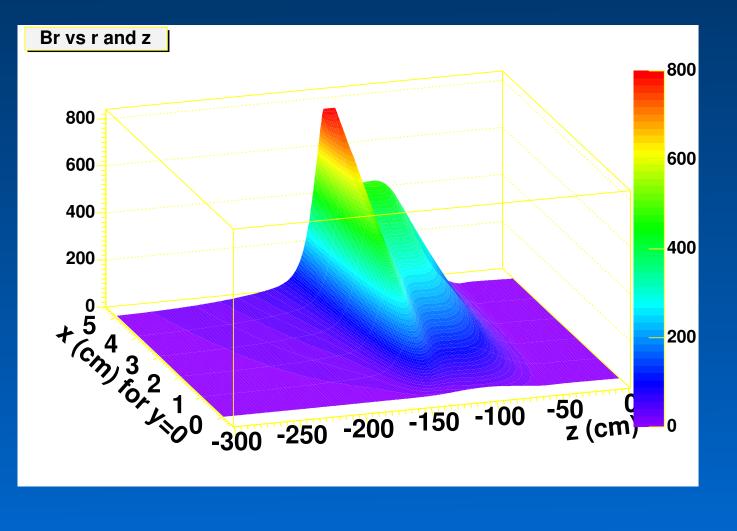

• Misalignment α between \vec{S} and \vec{B} results in depolarization: $\Delta P_{\mu} = 1 - |\cos \alpha|$

Relativistic Propogation of Spin

• Spin propogation is given by Bargmann, Michel, Telegdi (BMT) equation:


$$\frac{d\vec{s}}{dt} = \frac{e}{mc}\vec{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma}\right)\vec{B} - \left(\frac{g}{2} - 1\right)\frac{\gamma}{\gamma + 1}(\vec{\beta} \cdot \vec{B})\vec{\beta}\right]$$
(6)

• For non-uniform field solve by stepwise integration in Monte-Carlo



Inputs to Depolarization Calculation

- Field map
- Beam Tune

Radial Magnetic Field Map (Gauss)

Summary

- Estimated ΔP_{μ} for current tune is $pprox 3 imes 10^{-3}$
- Further reduction of beam size and divergence is desireable to reduce fringe field depolarization
- TWIST goal is for knowledge of ΔP_{μ} to better than 10^{-4}

Contents

- 1 Overview
- **2** What is $P_{\mu}\xi$?
- **3** Physics and Motivation for $P_{\mu}\xi$
- 4 Initial P_µ and Depolarization Effects
- 5 Statement of the Problem
- 6 Review of Spin 1/2 Leptons
- 7 Non-Relativistic Propogation of Spin in Uniform B

2

3

4

6

7

8

9

10

8 Relativistic Propogation of Spin

9 Inputs to Depolarization Calculation

10 Entrance Region Field Map

11 Summary

12 13

11