Direct Measurement of $P_{\mu \xi}$ at TWIST

WNPPC, February 19, 2006

Jingliang Hu, for TWIST Collaboration (http://twist.triumf.ca)
What is $P_\mu \xi$?

- P_μ is the polarization of the muon, and ξ is the asymmetry in angle of decay positrons from normal muon decay.

$$\frac{d^2 \Gamma}{dxd\cos \theta} \propto F_{LS}(x, \rho, \eta) \pm P_\mu \xi \cos \theta F_{AS}(x, \delta)$$

Standard Model: $\xi = 1$, $P_\mu = -1$
Motivation

- ξ and δ limit the probability of a right-handed muon decaying into any handed positron:

$$Q_R^\mu = \frac{1}{2} \left(1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right)$$

- $P_\mu \xi$ sets limit on mass and mixing parameter in Left-Right Symmetric Models:

$$1 - P_\mu \xi = 4 \left\{ \zeta^2 + \frac{M_1^4}{M_2^4} + \zeta \frac{M_1^2}{M_2^2} \right\}$$

$$\frac{3}{4} - \rho = \frac{3}{2} \zeta^2$$
Status of $P_{\mu \xi}$ Measurement

- **Direct measurements:**
 - $P_{\mu \xi} = 1.0027 \pm 0.0079 \pm 0.0030$

 Beltrami et al, PL B194 (1987)

 - $P_{\mu \xi} \delta/\rho > 0.99682$ (90% c.l.)

 Jodidio et al, PR D34, PR D37 (1986)

- **Indirect measurement:**
 - $0.9960 < P_{\mu \xi} < \xi < 1.0040$ (90% c.l.)

 TWIST, PRL 94, 101805 + PRD 71, 071101(R)
Experimental Setup

Production Target

Fringe Field

Stopping Material
Muon Beam Characterization: Time Expansion Chamber

- 2 modules measure μ beam positions & divergences in X & Y directions.
- Uncertainty in tracking: $\Delta x = 270.0 \mu m$, $\Delta \theta = 3.0 \text{ mrad}$
- Uncertainty in TEC position: $\Delta x = 2 \text{ mm}$, $\Delta \theta = 5.0 \text{ mrad}$
Evaluation of Systematic Uncertainties

Methodology

- Take data set or generate Monte Carlo runs under a condition that exaggerates possible sources of systematic error.
- Measure the effect on $(\rho, \eta, \xi, \xi_\delta)$ by fitting two correlated data sets.
- Scale the effect by exaggeration factor.

Example

- Drift chamber time zero (t_0) might change during the data taking. What is the uncertainty in $\mathcal{P}_\mu \xi$ due to the t_0 variation?
 - analyze a data set with t_0 before the data collection (t_0^{begin}).
 - analyze the same data with $t_0^{\text{begin}} + 10x(t_0^{\text{end}} - t_0^{\text{begin}})$ (10x exaggeration).
 - fit to each other: $\Delta \mathcal{P}_\mu \xi = 8.9 \times 10^{-3}$
 - divide the shift by exaggeration factor.
Summary of Systematic Uncertainties

<table>
<thead>
<tr>
<th>Category</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Beam & Polarization</td>
<td>3.69</td>
</tr>
<tr>
<td>Fringe field</td>
<td>3.40</td>
</tr>
<tr>
<td>Stopping target</td>
<td>1.40</td>
</tr>
<tr>
<td>Production target</td>
<td>0.21</td>
</tr>
<tr>
<td>Chamber Response</td>
<td>0.98</td>
</tr>
<tr>
<td>t_0 variations</td>
<td>0.89</td>
</tr>
<tr>
<td>Foil bulges</td>
<td>0.22</td>
</tr>
<tr>
<td>Cell asymmetry</td>
<td>0.22</td>
</tr>
<tr>
<td>Up-down efficiency</td>
<td>0.19</td>
</tr>
<tr>
<td>Density</td>
<td>0.17</td>
</tr>
<tr>
<td>Spectrometer Alignment</td>
<td>0.31</td>
</tr>
<tr>
<td>Rotations</td>
<td>0.22</td>
</tr>
<tr>
<td>Z position</td>
<td>0.22</td>
</tr>
<tr>
<td>B field to axis</td>
<td>0.03</td>
</tr>
<tr>
<td>Positron Interactions</td>
<td>0.30</td>
</tr>
<tr>
<td>Hard interactions</td>
<td>0.29</td>
</tr>
<tr>
<td>Multiple scattering</td>
<td>0.08</td>
</tr>
<tr>
<td>Outside material</td>
<td>0.02</td>
</tr>
<tr>
<td>Momentum Calibration</td>
<td>0.19</td>
</tr>
<tr>
<td>Endpoint fits</td>
<td>0.16</td>
</tr>
<tr>
<td>B field uniformity</td>
<td>0.09</td>
</tr>
<tr>
<td>Radiative Corrections</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Total Systematic Uncertainty:

$$3.80 \times 10^{-3}$$
Why is the Contribution from Fringe Field Big?

- Beam measurement by the TEC is not precise
 - TEC efficiency is low, which causes a big uncertainty in the angle measurement and a bias in the position measurement.
 - TEC calibration is not prefect.
 - TEC alignment to the drift chamber is not monitored.

- Beam characterization runs are not consistent
 - runs with “same settings” see a large difference in θ_y.

<table>
<thead>
<tr>
<th>Run</th>
<th>B2(G)</th>
<th>\bar{x}(cm)</th>
<th>\bar{y}(cm)</th>
<th>$\bar{\theta}_x$ (mrad)</th>
<th>$\bar{\theta}_y$ (mrad)</th>
<th>P^MC_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>18820</td>
<td>949</td>
<td>0.85</td>
<td>-1.1</td>
<td>0.87</td>
<td>-5.0</td>
<td>0.9955</td>
</tr>
<tr>
<td>18825</td>
<td>944</td>
<td>0.07</td>
<td>-5.9</td>
<td>0.97</td>
<td>7.0</td>
<td>0.9929</td>
</tr>
<tr>
<td>20565</td>
<td>949</td>
<td>0.94</td>
<td>-1.5</td>
<td>0.64</td>
<td>-19.2</td>
<td>0.9922</td>
</tr>
<tr>
<td>20558</td>
<td>944</td>
<td>0.06</td>
<td>-6.7</td>
<td>0.73</td>
<td>-11.2</td>
<td>0.9941</td>
</tr>
</tbody>
</table>
Result and Its Implication

\[P_\mu \xi = 1.0003 \pm 0.0006 \text{ (stat)} \pm 0.0038 \text{ (syst)} \]

- Consistent with the Standard Model prediction of 1. Reduces the uncertainty by about a factor of two on the current PDG value = 1.0027 \pm 0.0079 \pm 0.0030.
- Set new limits on muon handedness:

\[Q_R^\mu = \frac{1}{2} \left(1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right) \]
Summary and Outlook

- TWIST has completed its first direct measurement of $P_{\mu \xi}$ with 2004 data. The result reduces the uncertainty by a factor of \(~2\) on the PDG value.

- Largest systematic error is due to fringe field depolarization. Main reason is understood now. Improvements to the detector and beam line systems were made in 2005 data.
 - better calibration procedure
 - TEC alignment was carefully monitored and well determined

- Anticipation to improve $P_{\mu \xi}$ measurement by another factor of 2 in the future should be reasonable.

TWIST is funded by NSERC, DOE and Russian Ministry of Science. Special thanks to Western Canada Research Grid (Westgrid).
Extra Slides
Analysis Strategy

- Measure energy and angular distribution of decay positron
 - Reconstruct e^+ track with helix fit and take into account multiple scattering and field non-uniformity.
 - Calibrate e^+ energy to kinematic end point.

- Simulate detector acceptance with GEANT3
 - GEANT3 geometry contains virtually all detector components.
 - Simulate detector response in detail (match TDC shape).
 - Realistic, measured beam profile and divergence.
 - Muon pileup and beam e^+ contamination.

- Extract Michel Parameters with blind analysis technique
 - Monte Carlo data are generated using unknown, hidden values of (ρ, η, ξ, $\xi\delta$).
 - Final result kept hidden until the analysis is completed and systematic uncertainties evaluated.
Detector Array

- 56 chambers (44 DC+12 PC planes) symmetrically placed around the target.
- All planes precisely aligned rotationally and translationally.
- Beam stopping position carefully controlled by variable CO$_2$/He gas degrader.
• Full $O(\alpha)$ radiative corrections with exact electron mass dependence.
• Leading and next-to-leading logarithmic terms of $O(\alpha^2)$.
• Leading logarithmic terms of $O(\alpha^3)$.
• Corrections for soft pairs, virtual pairs, and an ad-hoc exponentiation.

Data Distribution

Surface μ decay spectrum

Acceptance of TWIST spectrometer
Extract the Michel Parameters

- Michel distribution is linear in ρ, η, ξ, and $\xi \delta$, so a fit to first order expansion is exact.

- Fit data (α_{data}) to sum of a base MC distribution (α_{MC}) plus MC-generated derivative distributions times fitting parameters ($\Delta \alpha$) representing deviations from base MC.

- Can also fit data to data and MC to MC for systematic tests.

\[n_i(\alpha_{\text{data}}) = n_i(\alpha_{\text{MC}}) + \frac{\partial n_i}{\partial \alpha} \Delta \alpha, \]

\[\alpha = [\rho, \eta, \xi, \xi \delta] \]