# Direct Measurement of $P_{\mu}\xi$ at TWIST

#### WNPPC, February 19, 2006

#### Jingliang Hu, for TWIST Collaboration (http://twist.triumf.ca)



# What is $P_{\mu}\xi$ ?

-  $P_{\mu}$  is the polarization of the muon, and  $\xi$  is the asymmetry in angle of decay positrons from normal muon decay.

$$\frac{d^2\Gamma}{dxd\cos\theta} \propto \mathcal{F}_{\mathcal{IS}}(x,\rho,\eta) \pm \mathcal{P}_{\mu}\xi\cos\theta\mathcal{F}_{\mathcal{AS}}(x,\delta)$$



# Motivation

 ξ and δ limit the probability of a right-handed muon decaying into any handed positron:

$$Q_R^{\mu} = \frac{1}{2}(1 + \frac{1}{3}\xi - \frac{16}{9}\xi\delta)$$

 - P<sub>μ</sub>ξ sets limit on mass and mixing parameter in Left-Right Symmetric Models:

$$1 - \mathcal{P}_{\mu}\xi = 4\{\zeta^2 + \frac{M_1^4}{M_2^4} + \zeta\frac{M_1^2}{M_2^2}\}$$
$$\frac{3}{4} - \rho = \frac{3}{2}\zeta^2$$



# Status of $P_{\mu}\xi$ Measurement

- Direct measurements:
  - $P_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$

Beltrami et al, PL B194 (1987)

 $- P_{\mu} \xi \delta / \rho > 0.99682 \qquad (90\% \ c.l.)$ Jodidio et al, PR D34, PR D37 (1986)

Indirect measurement:

 $\label{eq:product} \begin{array}{l} - \; 0.9960 < \mathsf{P}_{\mu}\xi < \xi < 1.0040 \quad (90\% \; c.l.) \\ \\ TWIST, \; PRL\; 94,\; 101805 + PRD\; 71,\; 071101(R) \end{array}$ 

#### **Experimental Setup**



#### **Muon Beam Characterization: Time Expansion Chamber**

- 2 modules measure µ beam positions & divergences in X & Y directions.
- uncertainty in tracking:  $\Delta x = 270.0 \ \mu m$ ,  $\Delta \theta = 3.0 \ mrad$
- uncertainty in TEC position:  $\Delta x = 2 \text{ mm}, \Delta \theta = 5.0 \text{ mrad}$



## **Evaluation of Systematic Uncertainties**

#### Methodology

- Take data set or generate Monte Carlo runs under a condition that exaggerates possible sources of systematic error.
- Measure the effect on  $(\rho, \eta, \xi, \xi\delta)$  by fitting two correlated data sets.
- Scale the effect by exaggeration factor.

#### Example

- Drift chamber time zero ( $t_0$ ) might change during the data taking. What is the uncertainty in  $P_{\mu}\xi$  due to the  $t_0$  variation?
  - > analyze a data set with  $t_0$  before the data collection ( $t_0^{begin}$ ).
  - > analyze the same data with  $t_0^{begin} + 10x(t_0^{end} t_0^{begin})$  (10x exaggeration).
  - hightarrow fit to each other:  $\Delta P_{\mu} \xi = 8.9 \times 10^{-3}$
  - > divide the shift by exaggeration factor.

## **Summary of Systematic Uncertainties**

| - Muon Beam & Pol   | 3.69 |  |
|---------------------|------|--|
| fringe field        | 3.40 |  |
| stopping target     | 1.40 |  |
| production target   | 0.21 |  |
| - Chamber Respons   | 0.98 |  |
| t0 variations       | 0.89 |  |
| foil bulges         | 0.22 |  |
| cell asymmetry      | 0.22 |  |
| up-down efficiency  | 0.19 |  |
| density             | 0.17 |  |
| - Spectrometer Alig | 0.31 |  |
| rotations           | 0.22 |  |
| z position          | 0.22 |  |
| B field to axis     | 0.03 |  |

| - Positron Interactio | ns   | 0.30 |
|-----------------------|------|------|
| hard interactions     | 0.29 |      |
| multiple scattering   | 0.08 |      |
| outside material      | 0.02 |      |
| - Momentum Calibra    | 0.19 |      |
| endpoint fits         | 0.16 |      |
| B field uniformity    | 0.09 |      |
| - Radiative Correcti  | 0.10 |      |
|                       |      |      |

Total Systematic Uncertainty: 3.80 x 10<sup>-3</sup>

# Why is the Contribution from Fringe Field Big?

- Beam measurement by the TEC is not precise
  - > TEC efficiency is low, which causes a big uncertainty in the angle measurement and a bias in the position measurement.
  - > TEC calibration is not prefect.
  - > TEC alignment to the drift chamber is not monitored.
- Beam characterization runs are not consistent
  - > runs with "same settings" see a large difference in  $\theta_{V.}$

| Run   | <b>B2</b> (G) | $\overline{x}(\mathrm{cm})$ | $\overline{y}(cm)$ | $\overline{\theta_x}(\mathbf{mrad})$ | $\overline{\theta_y}(\mathbf{mrad})$ | $P^{MC}_{\mu}$ |
|-------|---------------|-----------------------------|--------------------|--------------------------------------|--------------------------------------|----------------|
| 18820 | 949           | 0.85                        | -1.1               | 0.87                                 | -5.0                                 | 0.9955         |
| 18825 | 944           | 0.07                        | -5.9               | 0.97                                 | 7.0                                  | 0.9929         |
| 20565 | 949           | 0.94                        | -1.5               | 0.64                                 | -19.2                                | 0.9922         |
| 20558 | 944           | 0.06                        | -6.7               | 0.73                                 | -11.2                                | 0.9941         |

### **Result and Its Implication**

 $P_{\mu}\xi = 1.0003 \pm 0.0006 \text{ (stat)} \pm 0.0038 \text{ (syst)}$ 

- Consistent with the Standard Model prediction of 1. Reduces the uncertainty by about a factor of two on the current PDG value =  $1.0027 \pm 0.0079 \pm 0.0030$ .
- Set new limits on muon handedness:  $Q_R^{\mu} = \frac{1}{2}(1 + \frac{1}{3}\xi \frac{16}{9}\xi\delta)$



## **Summary and Outlook**

- TWIST has completed its first direct measurement of P<sub>μ</sub>ξ with 2004 data.
   The result reduces the uncertainty by a factor of ~2 on the PDG value.
- Largest systematic error is due to fringe field depolarization. Main reason is understood now. Improvements to the detector and beam line systems were made in 2005 data.
  - better calibration procedure
  - \*TEC alignment was carefully monitored and well determined
- Anticipation to improve  $P_{\mu}\xi$  measurement by another factor of 2 in the future should be reasonable .

**TWIST** is funded by NSERC, DOE and Russian Ministry of Science. Special thanks to Western Canada Research Grid (Westgrid).

#### **Extra Slides**

# **Analysis Strategy**

- Measure energy and angular distribution of decay positron
  - Reconstruct e<sup>+</sup> track with helix fit and take into account multiple scattering and field non-uniformity.
  - Calibrate e<sup>+</sup> energy to kinematic end point.
- Simulate detector acceptance with GEANT3
  - GEANT3 geometry contains virtually all detector components.
  - simulate detector response in detail (match TDC shape).
  - realistic, measured beam profile and divergence.
  - > muon pileup and beam e<sup>+</sup> contamination.
- Extract Michel Parameters with blind analysis technique
  - > Monte Carlo data are generated using unknown, hidden values of ( $\rho$ ,  $\eta$ ,  $\xi$ ,  $\xi\delta$ ).
  - Final result kept hidden until the analysis is completed and systematic uncertainties evaluated.

#### **Detector Array**



- 56 chambers (44 DC+12 PC planes) symmetrically placed around the target.
- All planes precisely aligned rotationally and translationally.
- Beam stopping position carefully controlled by variable  $CO_2$ /He gas degrader.

## **Radiative Corrections**



- terms of  $O(\alpha^2)$ .
- Leading logarithmic terms of  $O(\alpha^3)$ .
- Corrections for soft pairs, virtual pairs, and an ad-hoc exponentiation.

#### **Data Distribution**



#### **Extract the Michel Parameters**

 Michel distribution is linear in ρ, η, ξ, and ξδ, so a fit to first order expansion is exact.

$$egin{aligned} n_i(oldsymbollpha_{ ext{data}}) &= n_i(oldsymbollpha_{ ext{MC}}) + rac{\partial n_i}{\partial lpha} \Delta lpha, \ oldsymbollpha &= [oldsymbol
ho, oldsymbol\eta, oldsymbol \xi, oldsymbol \delta] \end{aligned}$$

- Fit data (α<sub>data</sub>) to sum of a base MC distribution (α<sub>MC</sub>) plus MC-generated derivative distributions times fitting parameters (Δα) representing deviations from base MC.
- Can also fit data to data and MC to MC for systematic tests.







