Alignment of TWIST Experiment Components

A. Hillairet

¹University of Victoria Victoria, Canada

²TRIUMF Vancouver, Canada

Winter Nuclear and Particle Physics Conference, 19 February 2006

Anthony Hillairet Alignment of *TWIST* Experiment Components

The muon decay spectrum is parametrized by the four Michel parameters

*P*_μξ describes the asymmetry of the spectrum

• In the SM :
$$P_{\mu}\xi = -1$$

The beam depolarization is the major systematic uncertainty of TWIST last measurement of $P_{\mu}\xi$ (Blair Jamieson's UBC doctoral thesis, 2006)

Total systematic uncertainty : $3.8 \cdot 10^{-3}$

Depolarization systematic uncertainty : 3.4 · 10⁻³

TWIST Spectrometer

æ

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・

The muons arriving in the spectrometer undergo three effects that reduce the polarization :

- The multiple scattering
- The entrance in the 2T magnetic field

Those two effects can be simulated.

But the fringe field effect is dependent on the position and the angle of the muons.

 \implies The beam characteristics have to be known as well as possible.

The muons arriving in the spectrometer undergo three effects that reduce the polarization :

- The multiple scattering
- The entrance in the 2T magnetic field

Those two effects can be simulated.

But the fringe field effect is dependent on the position and the angle of the muons.

 \Longrightarrow The beam characteristics have to be known as well as possible.

Image: A matched black

Beam characterization

A Time Expansion Chamber (TEC) is installed before the spectrometer on the beamline.

- 2 modules for X and Y
- Low mass detector
- Operating at low pressure (80mbar)

A B K A B K

A Time Expansion Chamber (TEC) is installed before the spectrometer on the beamline.

- 2 modules for X and Y
- Low mass detector
- Operating at low pressure (80mbar)

- TEC box installed in the beam vacuum
- Beam characterization before the fringe field

< 67 ▶

A B K A B K

Alignment Procedures

- Absolute optical alignment with a theodolite :
 - The yoke Cross-hairs on upstream and downstream
 - The magnetic field Mapping with a reference line
 - The TEC Wires of drift field planes on each module
- Relative alignments with particles :
 - The DC planes and the yoke Collimators installed upstream and downstream of the yoke
 - The DC planes and the magnetic field Decay positron helix fitted with an angle
 - The TEC and the DC planes.

・ロン ・ 日 ・ ・ 目 ・ ・ 日 ・

Alignment Procedures

- Absolute optical alignment with a theodolite :
 - The yoke Cross-hairs on upstream and downstream
 - The magnetic field Mapping with a reference line
 - The TEC Wires of drift field planes on each module
- Relative alignments with particles :
 - The DC planes and the yoke Collimators installed upstream and downstream of the yoke
 - The DC planes and the magnetic field Decay positron helix fitted with an angle
 - The TEC and the DC planes

イロト イヨト イヨト イヨト

Alignment Procedures

- Absolute optical alignment with a theodolite :
 - The yoke Cross-hairs on upstream and downstream
 - The magnetic field Mapping with a reference line
 - The TEC Wires of drift field planes on each module
- Relative alignments with particles :
 - The DC planes and the yoke Collimators installed upstream and downstream of the yoke
 - The DC planes and the magnetic field Decay positron helix fitted with an angle
 - The TEC and the DC planes

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Angular Relative DC/TEC Alignment

Comparison between the TEC and the DC angle measurements

- Straight tracks reconstruction in DC planes
 No magnetic field
- Reduced multiple scattering
 ⇒ 55MeV/c pions

For each track

The difference of the angle measurement of the 2 devices is calculated.

< 🗇 🕨

→ E → < E →</p>

Monte Carlo simulations are used to validate the procedure and evaluate the precision of the measurement.

DC X rotation	TEC X rotation	Angle X (TEC - DC)
0	0	-0.2 ± 0.7
10	0	9.6 ± 0.5
0	-10	9.5 ± 0.5
-20	0	-21.1 ± 0.5
0	20	-19.5 ± 0.5

Angles in [mrad]

The Monte Carlo simulation gives a uncertainty of : ± 1 mrad

DATA

Angle X measurement compared to the beam angle

Anthony Hillairet Alignment of *TWIST* Experiment Components

æ

< ロ > < 回 > < 回 > < 回 > < 回 > .

Conclusion

TEC/DC angular alignment results

 $\Delta \theta_X (TEC - DC) = (-2 \pm 1) mrad$ $\Delta \theta_Y (TEC - DC) = (-1 \pm 1) mrad$

- The TEC/DC position alignment analysis is the next step.
- The various alignment procedures are complementary.
- A consistency check will be possible with a relative alignment between the TEC and the magnetic field will be available.

Thank you For you attention And to Jingliang for his help on this study 30 Anthony Hillairet Alignment of TWIST Experiment Components 10/12

TWIST complete alignment scheme

Anthony Hillairet Alignment of *TWIST* Experiment Components

Straight line event

Anthony Hillairet Alignment of TWIST Experiment Components

æ