A Two Body Decay Search in the TWIST Spectrum

R. Bayes ^{1 2} For the *TWIST* Collaboration rbayes@triumf.ca

¹Department of Physics University of Victoria

²TRIUMF, Vancouver

Fundamental Symmetries Workshop July 10, 2010

Ryan Bayes

 \mathcal{TWIST} Rare Decays

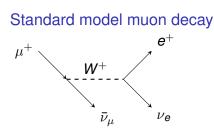
UVIC

크

・ロ・・ (日・・ (日・・ 日・・)

Introduction	TWIST Decay Spectra	Fitting Procedure	Systematic Effects	Results	Conclusions
Outline					

Introduction


- **TWIST Decay Spectra**
- **Fitting Procedure**
- Systematic Effects
- Results

Conclusions

UVIC

Ryan Bayes

Flavour Violation in Muon Decays

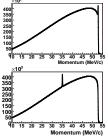
 flavour symmetry an experimental requirement

General cLFV decays in vacuum

 flavour symmetry breaking results in the production of a boson

イロト イヨト イヨト イヨト

UVIC

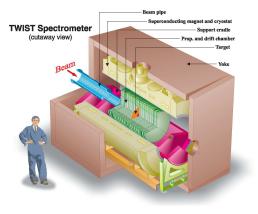

TWIST Rare Decays

Rvan Baves

Kinematics of Two Body Decays

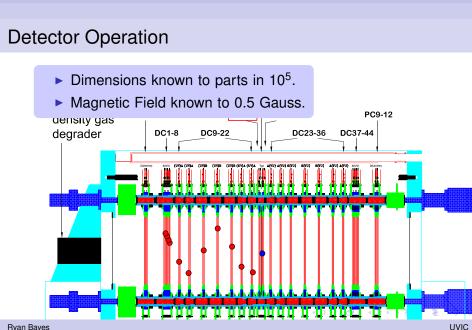
- Signal composed of decay positrons recoiling off X⁰ at a single momentum
- $m_X = 0$ global symmetry breaking

 $m_X > 0$ local symmetry breaking



Special case: In the presence of SUSY R-Parity breaking¹

$$\frac{\partial I}{\partial \cos \theta} \propto (1 + A \cos \theta) \text{ where } A = \pm \mathcal{P}_{\mu}$$

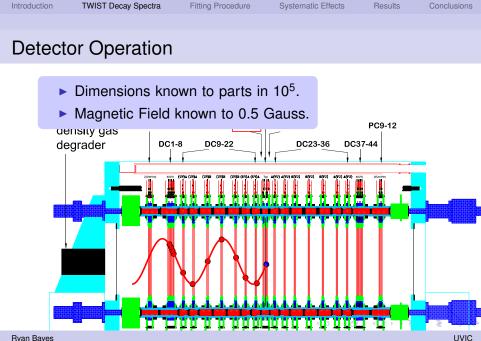

Ryan Bayes

TWIST Experiment

- 44 planar drift chambers(DC), 12 proportional chambers(PC)
- detector contained in 2 Tesla solenoidal magnet
- 29.6 MeV/c muons stop in high purity metal foil
- Decay positrons tracked through symmetric DC stack.

UVIC

Fitting Procedure

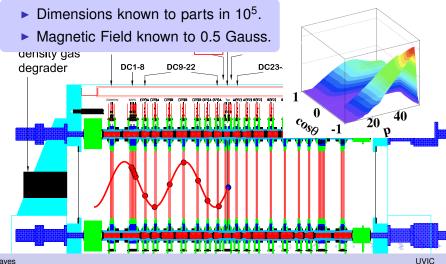

Systematic Effects

Results

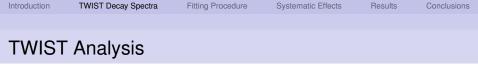
Ryan Bayes

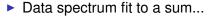
TWIST Rare Decays

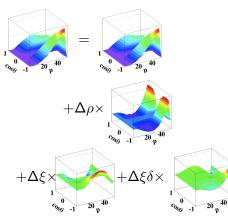
TWIST Decay Spectra

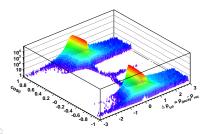


Ryan Bayes


TWIST Rare Decays


Results Con


Detector Operation


Ryan Bayes

 simulation of the detector used to account for reconstruction biases and efficiencies

 Long lived X⁰ signal dominated by the detector response

Ryan Bayes

Spectra Used in Search

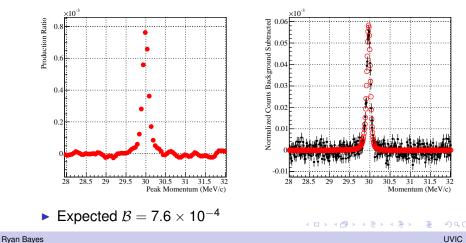
- All data from TWIST experiment combined for fit
- Simulated muon decay used as background
- The detector response models $\mu \rightarrow e^+ X^0$ signal.
- Determine $\mathcal{B} = \frac{\Gamma(\mu^+ \to e^+ X^0)}{\Gamma(\mu^+ \to e^+ \nu_e \bar{\nu}_\mu)}$ from response amplitude

Events collected after cuts

Silver	2.96 ×10 ⁸
Aluminum	2.46 ×10 ⁸
Total	5.42 ×10 ⁸

Estimated Branching Ratio

$$ho$$
 σ \sim 100 - 200 keV/c

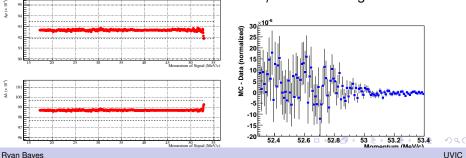

•
$$\mathcal{B} \propto \frac{\sigma}{\sqrt{N}} \sim \mathcal{O}(10^{-6})$$

UVIC

Ryan Bayes

Validation of Method

Large signal added to simulation

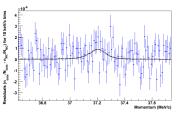

TWIST Rare Decays

Treatment of Systematic Effects

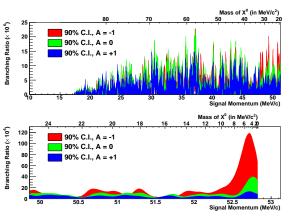
- Systematic effects are smooth changes in the spectrum
 - Can only affect signal amplitude
 - Absorbed by decay parameter corrections

Exception: Signals at endpoint

- Decay endpoint very sensitive to systematic effects
- Changes in endpoint look like $\mu^+ \rightarrow e^+ X^0$ signal



TWIST Rare Decays


UVIC

Branching Ratios

- Signals fit in 50 keV/c steps
- Confidence intervals from method by Feldman and Cousins ^a

^aPRD **57**, (1998),3873

 Systematic errors included in confidence band

UVIC

Ryan Bayes

Results Summary

► Average B compiled for p ∈[20 MeV/c,52 MeV/c]

Decay signal	90% Upper Limit	
A = 0	Average	8.1 ×10 ⁻⁶
	Endpoint	$3.3 imes10^{-5}$
A = -1	Average	8.4 ×10 ⁻⁶
	Endpoint	$6.7 imes10^{-5}$
A = +1	Average	5.7 ×10 ⁻⁶
	Endpoint	$8.5 imes 10^{-6}$
Bryman, 1986 ²	Average	3 ×10 ⁻⁴
Jodidio, 1986 ³	Endpoint	$2.5 imes 10^{-6}$

²*PRL* **57**, (1986) 2787 ³*PRD* **34**, (1986) 1967

Ryan Bayes

 \mathcal{TWIST} Rare Decays

ક⊦ ≣ ઝ૧ભ UVIC

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

- 5×10^8 muon decay events used to estimate $\mathcal{B} = \frac{\Gamma(\mu^+ \to e^+ X^{\mathsf{o}})}{\Gamma(\mu^+ \to e^+ \nu_e \bar{\nu}_{\mu})}$
- Discriminate isotropic and anisotropic decay signals
 - First direct measurement
- Improved upper limit in massive X⁰ case by a factor of 32
 - No evidence of signals when A > 0
 - Average of 90% upper limit between 5.7 and 8.4 ppm
- Limits set on massless X⁰
 - 90% upper limit between 8.5 and 33 ppm

・ロト ・回 ト ・ヨト ・ヨト … ヨ

ults Conclusions

The TWIST Collaboration

TRIUME Ryan Bayes 🐥 ★ Yuri Davydov Wayne Faszer Makoto Fujiwara **David Gill** Alexander Grossheim Peter Gumplinger Anthony Hillairet **Robert Henderson** Jingliang Hu **Glen Marshall Dick Mischke** Konstantin Olchanski Art Olin 👗 **Robert Openshaw** Jean-Michel Poutissou Renée Poutissou Grant Sheffer **Bill Shin**

Alberta Andrei Gaponenko ® Robert MacDonald ®

British Columbia James Bueno ® Mike Hasinoff

Montreal Pierre Depommier

Regina Ted Mathie Roman Tacik Kurchatov Institute Vladimir Selivanov

Texas A&M Carl Galiardi Bob Tribble

Valpariso Don Koetke Shirvel Stanislaus

★ graduate student
⊛ graduated
♣ also UVic

- Funding Support from NSERC and US DOE
- Additional support from TRIUMF, Russian Science Ministry, and NRC
- Computing resources provided by WestGrid ____

Ryan Bayes

 \mathcal{TWIST} Rare Decays

UVIC