Final Results for the Muon Decay Parameters from TWIST

Glen Marshall, TRIUMF (for the *TWIST* Collaboration) Physics of Fundamental Symmetries and Interactions, PSI, Oct 2010

Decay parameters

• Muon decay parameters ρ , η , $\mathcal{P}_{\mu}\xi$, δ

▶ muon differential decay rate *vs.* energy and angle:

 $egin{array}{rcl} rac{d^2\Gamma}{dx\;d\cos heta}&=&rac{1}{4}m_\mu W^4_{\mu e}G^2_F\sqrt{x^2-x_0^2}\,\cdot\ &\{\mathcal{F}_{IS}(x,oldsymbol{
ho},oldsymbol{\eta})+\mathcal{P}_\mu\cos heta\cdot\mathcal{F}_{AS}(x,oldsymbol{\xi},oldsymbol{\delta})\}+R.C. \end{array}$

► where

$$egin{array}{rll} \mathcal{F}_{IS}(x,oldsymbol{
ho},oldsymbol{\eta}) &=& x(1-x)+rac{2}{9} oldsymbol{
ho}(4x^2-3x-x_0^2)+oldsymbol{\eta} x_0(1-x) \ \mathcal{F}_{AS}(x,oldsymbol{\xi},oldsymbol{\delta}) &=& rac{1}{3} oldsymbol{\xi} \sqrt{x^2-x_0^2} \left[1-x+rac{2}{3} oldsymbol{\delta} \left\{4x-3+ig(\sqrt{1-x_0^2}-1ig)
ight\}
ight] \end{array}$$

and
$$W_{\mu e} = rac{m_{\mu}^2 + m_e^2}{2m_{\mu}}, \, x = rac{E_e}{W_{\mu e}}, \, x_0 = rac{m_e}{W_{\mu e}}$$

- L. Michel, Proc. Phys. Soc. A63 (1950) 514
- C. Bouchiat and L. Michel, Phys. Rev. 106 (1957) 170.
- T. Kinoshita and A. Sirlin, Phys. Rev. 107 (1957) 593.
- T. Kinoshita and A. Sirlin, Phys. Rev. 108 (1957) 844.

 θ \vec{p}_{μ}

Spectrum shape and radiative corrections

- Full O(α) radiative corrections with exact electron mass dependence.
- Leading and next-to-leading logarithmic terms of O(α²L²) and O(α²L), L=ln((m_µ/m_e)²)
- Leading logarithmic terms of $\mathcal{O}(\alpha^3 L^3)$.
- ► Ignores 𝒪(α²L⁰) (2007).

PSI2010, Oct 11 2010

(θ for TWIST is (π - θ) in decay parameter definition)

K. Melnikov, J. High Energy Phys. (09):014 (2007)
A. Arbuzov, J. High Energy Phys. 2003(03):063 (2003)
A. Arbuzov et al., Phys. Rev. D66, 93003 (2002)
A. Arbuzov et al., Phys. Rev. D65, 113006 (2002)

Matrix elements

- Most general local, Lorentz-invariant, lepton-number conserving interaction determined by 19 real parameters.
- lncludes scalar, vector, and tensor $(\Gamma^{S}, \Gamma^{V}, \Gamma^{T})$ interactions among left- and right-handed μ , e (SM: $g_{LL}^{V} = 1$, all others zero).
- Decay parameters are bilinear combinations of $g_{arepsilon\mu}^{\gamma}$
- Probability for decay of μ–handed muon to ε–handed electron:

$$Q_{arepsilon\mu}=rac{1}{4}|g^S_{arepsilon\mu}|^2+|g^V_{arepsilon\mu}|^2+3(1-\delta_{arepsilon\mu})|g^T_{arepsilon\mu}|^2$$

For example, $R\bar{H}$ coupling in μ decay in terms of decay parameters:

$$Q^{\mu}_{R} \;=\; rac{1}{2} [1 + rac{1}{3} m{\xi} - rac{16}{9} m{\xi} \delta]$$

Fetscher, Gerber and Johnson, Phys. Lett. B173 (1986) 102-106

Pre-*TWIST* **decay parameters**

From the Review of Particle Physics (SN)	I values)
• $\rho = 0.7518 \pm 0.0026$ (S.E. Derenzo, Phys. Rev. 184 (1969) 1854)	(0.75)
• $\delta = 0.7486 \pm 0.0026 \pm 0.0028$ (B. Balke <i>et al.</i> , Phys. Rev. D37 (1988) 587)	(0.75)
• $\mathcal{P}_{\mu}\xi$ = 1.0027 ± 0.0079 ± 0.0030 (I. Beltrami <i>et al.</i> , Phys. Lett. B194 (1987) 326)	(1.00)
• $\mathcal{P}_{\mu}(\xi \delta / \rho) > 0.99682 $ (90%CL) (A. Jodidio <i>et al.</i> , Phys. Rev. D341(1986) 1967, and erratu	m) <mark>(1.00)</mark>
$\eta = 0.011 \pm 0.085$ (H. Burkhardt <i>et al.</i> , Phys. Lett. 160B (1985) 343) (now superseded)	(0.00)

The goal of \mathcal{TWIST} is to find any evidence for new physics that may become apparent by improving the precision of ρ , δ , and $\mathcal{P}_{\mu}\xi$ by one order of magnitude compared to prior experimental results.

→ measure yield vs. energy and angle, and understand depolarization, to a few parts in 10⁴.

Spectrometer and muon target

- Uses highly polarized µ⁺ beam from M13.
- Stops µ⁺ in a symmetric detector.
- Tracks e⁺ through uniform, well-known field.
- Completed data taking in 2007.
- Extracts decay parameters by comparison to detailed GEANT3 simulation.

Two-dimensional spectrum fit

- fit data to normalized GEANT3 simulation
- use linearity in $\mathcal{P}_{\mu}\xi$, $\mathcal{P}_{\mu}\xi\delta$, ρ , η
- measure *differences* from hidden parameters λ_{MC} .

Spectrum fit quality

- Fiducial region: p < 52.0 MeV/c, 0.54 < $\cos\theta < 0.96$,
- 10.0 MeV/c < p_T < 38.0 MeV/c, |p_Z| > 14.0 MeV/c
- All data sets: 11×10^9 events, 0.55×10^9 in (p, $\cos\theta$) fiducial
- Simulation sets: 2.7 times data statistics

Set-to-set statistical consistency

Key:

Ag target sets

- 68- μ stop slightly US
- ▶ 70-*B* = 1.96T
- ▶ 71-*B* = 2.04T
- ► 72- TECs in
- ► 74- production
- ► 75- production
- ▶ 76- μ beam mis-steered

Al target sets

- ► 83- DS extra material
- 84- production
- ▶ 86- μ beam mis-steered
- ► 87- production
- ▶ 91- low beam momentum
- ▶ 92- low beam momentum
- ▶ 93- low beam momentum

Differences (Δ) are with respect to blind parameters. Set-dependent corrections are applied; error bars and weights for the means are *statistical only*.

Blind vs. revised analysis

The blind analysis results showed evidence of possible mistakes:

- set-to-set statistical consistency satisfactory for ρ , δ , and $\mathcal{P}_{\mu}^{\pi}\xi$, but $\mathcal{P}_{\mu}^{\pi}\xi\delta/\rho$ different for AI and Ag targets by 3.9 σ .
- $\mathcal{P}_{\mu}^{\pi} \xi \delta / \rho$ averaged over all sets was 2.9 σ greater than 1.0.
 - > unlikely in four-fermion formulation with massless neutrinos.
- Search for mistakes identified two corrections and two procedural changes:
 - radiative decay: small correction for Ag only
 - mean stopping position differences (data vs. simulation): corrected setby-set, based on better analysis of stop position
 - separate systematic uncertainties for Ag and Al targets for bremsstrahlung, target thickness, and mean stopping position
 - ρ and δ correlations from all sets applied to $\mathcal{P}_{\mu}^{\pi\xi}$
- After the revisions, the Ag-Al $\mathcal{P}_{\mu}^{\pi} \xi \delta / \rho$ difference becomes <1 σ .

Uncertainties in ρ and δ

Positron interactions systematic

- "Broken tracks" analysis:
 - ▶ 2 e^- , 1 e^+ → δ -electron
 - ▶ 2 e⁺ → Bremsstrahlung
- Agreement of data and sim:
 - δ -electrons < 1%
 - Bremsstrahlung differs by 2.4%

Uncertianties in $\mathcal{P}_{\mu}{}^{\pi}\xi$

- Uncertainties for all three parameters are from the revised analysis
- Differences to blind results are small:
 - *σ*(*ρ*) changed by
 -0.3×10⁻⁴
 - σ(δ) changed by
 +0.1×10⁻⁴
 - σ(𝒫_μ^πξ_{avg}) changed by
 -0.2×10⁻⁴
- Difference of $\mathcal{P}_{\mu}^{\pi} \xi \delta / \rho$ for Ag and Al is reduced to <1 σ in the revised analysis.

Fringe field depolarization

Asymmetric depolarization systematic

Decay parameter results

Left-right symmetric analysis

• Heavy W_R that mixes with W_L to restore parity at high energy $W_L = W_1 \cos \zeta + W_2 \sin \zeta$, $W_R = e^{i\omega} (-W_1 \sin \zeta + W_2 \cos \zeta)$

▶ P. Herczeg, PRD 34 (1986) 3499 uses general parameters:

$$t=rac{g_R^2m_1^2}{g_L^2m_2^2}, \qquad t_ heta=trac{|V_{ud}^R|}{|V_{ud}^L|}\simeq trac{\cos heta_R}{\cos heta_{Cab}}, \qquad \zeta_g^2=rac{g_R^2}{g_L^2}\zeta^2$$

• g_L , g_R and V_{ud}^L , V_{ud}^R permit differences in left and right sectors, with possible CP violating phases ω and α , and for muon decay:

$$ho \simeq rac{3}{4}(1-2\zeta_g^2), \quad \delta = rac{3}{4}, \quad \xi \simeq 1-2(t^2+\zeta_g^2),$$

$$\mathcal{P}^{\pi}_{\mu}\simeq 1-2t^2_{ heta}-2\zeta^2_g-4t_{ heta}\zeta_g\cos(lpha+\omega)$$

• allowing restrictions to be put on LRS mass m_2 and mixing ζ , e.g.,

$$1 - \frac{\mathcal{P}_{\mu}^{\pi} \xi \delta}{\rho} \simeq 2t^2 (1 + \frac{\cos^2 \theta^R}{\cos^2 \theta_{Cab}}) + 2\zeta_g^2 + 4\zeta_g t \frac{\cos \theta^R}{\cos \theta_{Cab}} \cos(\alpha + \omega)$$

TWIST 2D exclusion plot and LRS limits

- ► Previous muon decay LRS parameter limits used individual limits for ρ , $\mathcal{P}_{\mu}^{\pi}\xi$, or $\mathcal{P}_{\mu}^{\pi}\xi\delta/\rho$.
- TWIST has simultaneous measurements of three parameters; correlations contribute to the confidence interval.

LRS limit comparison

Global analysis result

- Include new results with other muon decay observables to restrict coupling constants
 - influences mostly right-handed muon terms

$$egin{aligned} Q^{\mu}_{R} &=& rac{1}{4} |g^{S}_{LR}|^{2} + rac{1}{4} |g^{S}_{RR}|^{2} + |g^{V}_{LR}|^{2} + |g^{V}_{RR}|^{2} + 3|g^{T}_{LR}|^{2} \ &=& rac{1}{2} [1 + rac{1}{3} m{\xi} - rac{16}{9} m{\xi} \delta] \ &<& 8.2 imes 10^{-4} \quad (90\% ext{C.L.}) \end{aligned}$$

• $\sim 6 \times$ reduction

Limits for heavy sterile neutrinos

Muon decay spectrum shape places limits on heavy neutrino mass and mixing in a mass region inaccessible with π or K decays.

P. Kalyniak and J.N. Ng, Phys. Rev. D 25 (1982) 1305.

M.S. Dixit et al., Phys. Rev. D 27 (1983) 2216.

FIG. 24: The 2σ allowed region (dark areas) in the $(m_{\nu_h}; |U_{\mu h}|^2)$ parameter space for Dirac (a = -1) and Majorana cases obtained from the combined analysis of LSND and MiniBooNE ν_{μ} and $\overline{\nu}_{\mu}$ data. The regions excluded by the $\pi_{\mu 2}$ and $K_{\mu 2}$ decay experiments [36] and allowed bands from MiniBooNe $\overline{\nu}_{\mu}$ (solid line) and ν_{μ} (dashed lines) data, are also shown. The hatched region is excluded from the results of precision measurements of the muon decay parameters by the TWIST experiment [37], see Sec. VI.

Heavy sterile neutrino model

S.N. Gninenko, arXiv:1009.5536v2, Sep 2010

G.M. Marshall, Final Results from TWIST

Summary

- Systematic uncertainties in muon decay parameter measurements were substantially reduced in *TWIST*.
- Total uncertainties were reduced by factors of **10**, **11**, and **7** for ρ , δ , and $\mathcal{P}_{\mu}^{\pi}\xi$ respectively, roughly achieving the goals of the experiment.
- Differences with Standard Model predictions are respectively -0.9σ, +1.4σ, and +1.2σ, after post-blind revisions.
- $\mathcal{P}_{\mu}^{\pi} \xi \delta / \rho$ deviates by +2.3 σ from the expected upper limit of 1.0.

TWIST participants, past and present

TRIUMF Ryan Bayes *† Yuri Davydov **Wayne Faszer** Makoto Fujiwara **David Gill Alexander Grossheim Peter Gumplinger** Anthony Hillairet *† **Robert Henderson Jingliang Hu** John A. Macdonald § **Glen Marshall Dick Mischke** Mina Nozar Konstantin Olchanski Art Olin † **Robert Openshaw** Jean-Michel Poutissou **Renée Poutissou Grant Sheffer Bill Shin** ^{±±}

Alberta Andrei Gaponenko ** Robert MacDonald ** Maher Quraan Nate Rodning §

British Columbia James Bueno * Mike Hasinoff Blair Jamieson **

Montréal Pierre Depommier

Regina Ted Mathie Roman Tacik Kurchatov Institute Vladimir Selivanov

Texas A&M Carl Gagliardi Jim Musser ** Bob Tribble

Valparaiso Don Koetke Shirvel Stanislaus

Recently graduated
Graduated
also U Vic
also Saskatchewan
deceased

Muon production and transport

Detector array

R. Henderson et al., Nucl. Instr. and Meth. A548 (2005) 306-335

PSI2010, Oct 11 2010

Detector array

R. Henderson et al., Nucl. Instr. and Meth. A548 (2005) 306-335

TECs for beam characterization

- Need to know x, y, θ_x, θ_y, and correlations, for incident muon beam.
- Measure in two modules of low pressure (80 mbar) time expansion chambers (TEC).
- "Correct" for multiple scattering (~ 20 mrad rms).
- Simulate by sampling corrected distributions.
- Decay parameters measured with TEC removed; multiple scattering reduces polarization.
 - J. Hu et al., NIM A566 (2006) 563-574

Surface muon polarization

- Pions decaying at rest produce muon beams with P_µ > 99%.
- Depolarization must be controlled using small beams near kinematic edge, 29.8 MeV/c.
- Use $\sim 4 \times 10^3 \ \mu^+ \ s^{-1}$.
- Muon total range at density ~1 only about 1.5 mm!

Momentum calibration

- Use kinematic edge at 52.8 MeV/c: energy loss and planar geometry lead to cosθ dependence.
- Difference of ~10 keV/c prior to calibration.
- Calibration at edge provides no guidance on how to propagate the difference to lower momenta in the spectrum.

Depolarization in muon target material

- Estimate of relaxation is included in simulation; small correction is made to polarization parameter.
- μSR experiment establishes no fast relaxation.
- Statistical uncertainty in λ is included in decay parameter statistical uncertainty.

Selecting muons in metal target

Place cut on 2-d distribution so that <0.5% of "stops in gas" contaminate "stops in target" region (zone 1). stops in gas PC6 signal amplitude 10⁵ μ^+ 10⁴ zone 1 primarily metal 10³ 10² 10 0<u>0</u> 400 50 350 100 150 200 250 300 PC5 signal amplitude

Blind analysis

Spectrum fit quality

Normalised residuals for nominal set (s87)

Corrections to fit results

- Depolarization from scattering in production target
 - ► +0.9×10⁻⁴ for full momentum sets, +5.6×10⁻⁴ for reduced momentum sets, for $\mathcal{P}_{\mu}\xi$ only.
- Simulations generated with incorrect polarization relaxation rates
 - ► +2.9×10⁻⁴ for Ag sets, +2.4×10⁻⁴ for Al sets
- Statistical biases
 - χ^2 fitting of Poisson statistics with 1/N weight is biased
 - ► in fitting data to simulation, weight includes 1/N from both
 - \blacktriangleright for unequal statistics, this is biased by ${\sim}0.5{\times}10^{\text{-4}}$
 - energy calibration fit bias of typically (-1.1,-0.4,+1.9)×10⁻⁴ for ρ , δ , $\mathcal{P}_{\mu}\xi$, applied set-by-set