*TWIST**: Precision Measurement of the Muon Decay Parameters

***TRIUMF Weak Interaction Symmetry Test**

Standard Model Tests and Fundamental Symmetries Session International Nuclear Physics Conference 5 July 2010

R.E. Mischke, TRIUMF on behalf of the *TWIST* collaboration

Muon decay formalism

Assume a four-fermion interaction that is:

- local, derivative-free, lepton-number-conserving
 Allows scalar, vector, or tensor; left or right
- Description of Fetscher and Gerber (see PDG):
 Fetscher, Gerber and Johnson, Phys. Lett. B173 (1986) 102-106

$$M \;\;=\;\; rac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma=S,V,T \ arepsilon,\mu=R,L}} g_{arepsilon\mu}^\gamma ig\langle ar{e}_arepsilon \, |\Gamma^\gamma| \, (
u_e)_n
angle \, \langle (ar{
u}_\mu)_m \, |\Gamma_\gamma| \, \mu_\mu
angle$$

Coupling constants

PDG limits on all couplings (pre TWIST):

(in parentheses, Gagliardi *et al.*, PRD **72**, 073002 (2005)) $|g_{RR}^{S}| < 0.066(0.067)$ $|g_{RR}^{V}| < 0.033(0.034)$ $|g_{RR}^{T}| \equiv 0$ $|g_{LR}^{S}| < 0.125(0.088)$ $|g_{LR}^{V}| < 0.060(0.036)$ $|g_{LR}^{T}| < 0.036(0.025)$

Muon parameter description

 Muon decay (Michel) parameters ρ, η, Ρ_μξ, δ: muon differential decay rate vs. energy and angle:

 $\frac{d^2\Gamma}{dx\,d\cos\theta} = \frac{1}{4}m_{\mu}W_{\mu e}^4 G_F^2 \sqrt{x^2 - x_0^2} \left\{ \mathcal{F}_{IS}(x,\rho,\eta) + \mathcal{P}_{\mu}\cos\theta \cdot \mathcal{F}_{AS}(x,\xi,\delta) \right\} + R.C.$ Very important where $\mathcal{F}_{IS}(x,\rho,\eta) = x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x)$ $\left| \mathcal{F}_{AS}(x, \boldsymbol{\xi}, \boldsymbol{\delta}) \right| = \left| \frac{1}{3} \boldsymbol{\xi} \sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3} \boldsymbol{\delta} \left\{ 4x - 3 + \left(\sqrt{1 - x_0^2} - 1 \right) \right\} \right|$ $W_{\mu e} = rac{m_{\mu}^2 + m_e^2}{2m_{\mu}}, \, x = rac{E_e}{W_{\mu e}}, \, x_0 = rac{m_e}{W_{\mu e}}. \, \, rac{\mathrm{d}^2\Gamma}{\mathrm{dx\,dcos\,0}_{45}}$ 1.0 0.5 θ COSA 0.2

Pre- TWIST decay parameters

From the Review of Particle Physics

	Year	SM
$\eta = -0.007 \pm 0.013$	1985	0.00
$\rho = 0.7518 \pm 0.0026$	1969	0.75
$\delta = 0.7486 \pm 0.0026 \pm 0.0028$	1988	0.75
$P_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$	1987	1.00
$P_{\mu}(\xi \delta / \rho) > 0.99682 (90\% CL)$	1986	1.00

The goal of *TWIST* is to find any new physics that may be revealed by improving the precision of each of the muon decay parameters ρ , δ , and $P_{\mu}\xi$ by at least one order of magnitude.

Physics data sets

- Fall 2002
 - Test data-taking procedures and develop analysis techniques
 - First physics results ρ and δ
 - Graphite-coated Mylar target not suitable for P_μξ
- Fall 2004
 - Aluminum target and Time Expansion Chamber enabled first P_μξ measurement
 - Improved determinations of ρ and δ
- 2006-07
 - Both Ag (2006) and Al (2007) targets (1.1×10¹⁰ events)
 - Ultimate *TWIST* precision for ρ , δ , and $P_{\mu}\xi$
 - Also measured negative muon decay-in-orbit when bound to Al

Muon production and transport

R. Henderson et al., Nucl. Instr. and Meth. A548 (2005) 306-335

Analysis: fit to simulation (MCfit)

50

We fit data minus simulation Spectrum is linear in Ρμ ξ, Ρμ ξδ, ρ, η Differences from hidden parameters are measured.

9

Spectrum fit quality

• Excellent fit quality over $(p, \cos\theta)$ fiducial region: p < 52.0 MeV/c, 0.54 < $\cos\theta < 0.96$, 10.0 MeV/c < $p_T < 38.0 \text{ MeV/c}$, $|p_z| > 14.0 \text{ MeV/c}$

Momentum calibration

 Use kinematic edge at
 52.8 MeV/c: energy loss and planar geometry lead to cosθ dependence.

 Difference of ~10 keV/c prior to calibration.

 Calibration at edge provides no guidance on how to propagate the difference to lower momenta in the spectrum.

Positron interactions

Improved ρ and δ uncertainties

Uncertainties	ρ (×10 ⁻⁴)	δ (×10 ⁻⁴)
Positron interactions	1.8	1.6
External uncertainties	1.3	0.6
Momentum calibration	1.2	1.2
Chamber response	1.0	1.8
Resolution	0.6	0.7
Spectrometer alignment	0.2	0.3
Beam stability	0.2	0.0
Systematics in quadrature	2.8	2.9
Statistical uncertainty	0.9	1.6
Total uncertainty	3.0	3.3

Improved P_μξ uncertainties

Uncertainties	Ρ _μ ξ (× 10 ⁻⁴)
Depolarization in fringe field	+15.8, -4.0
Depolarization in stopping material	3.2
Background muons	1.0
Depolarization in production target	0.3
Chamber response	2.3
Resolution	1.5
Momentum calibration	1.5
External uncertainties	1.2
Positron interactions	0.7
Beam stability	0.3
Spectrometer alignment	0.2
Systematics in quadrature	+16.5, -6.2
Statistical uncertainty	3.5
Total uncertainty	+16.9, -7.2

Fringe field, solenoid entrance

Depolarization in target material

 Estimate of relaxation is included in simulation; correction is made to polarization parameter.
 μSR experiment establishes no fast relaxation.
 Statistical uncertainty in λ is included in decay parameter statistical uncertainty.

Selecting muons in metal target

Comparisons with previous results

SM extension: Left-Right Symmetric

Weak eigenstates in terms of mass eigenstates and mixing angle:

 $W_L = W_1 \cos \zeta + W_2 \sin \zeta, \quad W_R = e^{i\omega} (-W_1 \sin \zeta + W_2 \cos \zeta)$

- Assume possible differences in left and right couplings and CKM character (P. Herczeg, Phys. Rev. D 34, 3449 3456 (1986)) Use notation: $t = \frac{g_R^2 m_1^2}{g_L^2 m_2^2}, \quad t_{\theta} = t \frac{|V_{ud}^R|}{|V_{ud}^L|}, \quad \zeta_g^2 = \frac{g_R^2}{g_L^2} \zeta^2$
- Then, for muon decay, the muon decay parameters are modified:

$$m
ho = rac{3}{4}(1-2\zeta_g^2), \quad m\delta = rac{3}{4}, \quad m\xi = 1-2(t^2+\zeta_g^2),$$

 $\mathcal{P}_{\mu} = 1 - 2t_{ heta}^2 - 2\zeta_g^2 - 4t_{ heta}\zeta_g\cos(lpha + \omega)$

- "manifest" LRS assumes $g_R = g_L$, $V^R = V^L$, $\alpha_{,\omega} = 0$ (no CP violation).
- "pseudo-manifest" LRS allows CP violation, but $V^{R} = (V^{L})^{*}$ and $g_{R} = g_{L}$.
- LRS "non-manifest" or generalized LRS makes no such assumptions.

LRS parameters from muon decay

Are these results final?

• Combine: $P_{\mu}\xi\delta/\rho = 1.00192 + 0.00167$ - 0.00066

- result is 2.9 σ above "physical" limit of 1.0 from matrix element constraints, using correlations for three parameters
- P_µξδ/ρ greater for Ag target than Al target
- many possible sources of error were checked and rejected
- muon stopping location in data vs. simulation appears to be leading candidate; affects mostly ρ and δ
- physics interpretations must be considered preliminary
 - LRS result will change slightly, Q^µ_R will be sensitive

TWIST Participants

TRIUMF

Ryan Bayes *v Yuri Davydov **Wayne Faszer** Makoto Fujiwara **David Gill Alexander Grossheim Peter Gumplinger** Anthony Hillairet **y **Robert Henderson Jingliang Hu** John A. Macdonald x **Glen Marshall Dick Mischke** Mina Nozar Konstantin Olchanski Art Olin y **Robert Openshaw** Jean-Michel Poutissou **Renée Poutissou Grant Sheffer** Bill Shin 77

Alberta Andrei Gaponenko ** Robert MacDonald ** Maher Quraan y Nate Rodning x

British Columbia James Bueno ** Mike Hasinoff Blair Jamieson **

Montréal Pierre Depommier

Regina

Ted Mathie Roman Tacik Kurchatov Institute Vladimir Selivanov

Texas A&M Carl Gagliardi Jim Musser ** Bob Tribble

Valparaiso

Don Koetke Shirvel Stanislaus

* Graduate student ** graduated y also U Vic z also Manitoba zz also Saskatchewan x deceased