Final Results on Muon Decay from TWIST

Carl A. Gagliardi
Texas A&M University
for the TWIST Collaboration

Outline

• Introduction to muon decay
• TWIST experiment
• Previous TWIST results
• Final TWIST results
Muon decay spectrum

• The energy and angle distributions of positrons following polarized muon decay obey the Michel spectrum:

\[
\frac{d^2\Gamma}{x^2 dx d(\cos \theta)} \propto (3 - 3x) + \frac{2}{3} \rho (4x - 3) + 3\eta \frac{r_0}{x} (1 - x) + P_\mu \xi \cos \theta \left[(1 - x) + \frac{2}{3} \delta (4x - 3)\right] \quad (+ \text{rad. corr.})
\]

where \(x = \frac{E_e}{E_{e,\text{max}}} \)

• Pre-TWIST accepted values for the muon decay (Michel) parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>0.7518 (\pm) 0.0026</td>
</tr>
<tr>
<td>(\eta)</td>
<td>-0.007 (\pm) 0.013</td>
</tr>
<tr>
<td>(P_\mu \xi)</td>
<td>1.0027 (\pm) 0.0079 (\pm) 0.0030</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.7486 (\pm) 0.0026 (\pm) 0.0028</td>
</tr>
<tr>
<td>(P_\mu (\xi \delta / \rho))</td>
<td>> 0.99682 (90% c.l.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carl Gagliardi – Final Results on Muon Decay with TWIST
Muon decay matrix element

- Most general Lorentz-invariant, local, lepton-number conserving muon decay matrix element:

\[M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T, \epsilon, \mu=R,L} g_{\epsilon\mu}^\gamma \langle \overline{e}_\epsilon | \Gamma^\gamma | (\nu_e)_n \rangle \langle (\overline{\nu}_\mu)_m | \Gamma_\gamma | \mu_\mu \rangle \]

- The muon decay parameters are bi-linear combinations of the \(g_{\epsilon\mu}^\gamma \).
- In the Standard Model, \(g_{VLL}^V = 1 \), all others are zero.
- Pre-TWIST global fit results (all 90% c.l.):

| \(|g_{RR}^S| < 0.066\) | \(|g_{RR}^V| < 0.033\) | \(|g_{RR}^T| \equiv 0\) |
| --- | --- | --- |
| \(|g_{LR}^S| < 0.125\) | \(|g_{LR}^V| < 0.060\) | \(|g_{LR}^T| < 0.036\) |
| \(|g_{RL}^S| < 0.424\) | \(|g_{RL}^V| < 0.110\) | \(|g_{RL}^T| < 0.122\) |
| \(|g_{LL}^S| < 0.550\) | \(|g_{LL}^V| > 0.960\) | \(|g_{LL}^T| \equiv 0\) |
Goal of TWIST

• Search for new physics that can be revealed by order-of-magnitude improvements in our knowledge of ρ, δ, and $P_{\mu} \xi$

Two examples

• Model-independent limit on muon handedness

\[Q_R^\mu = \frac{1}{2} \left[1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right] \]

• Left-right symmetric model: $SU(2)_L \times SU(2)_R \times U(1)$

\[W_L = W_1 \cos \zeta + W_2 \sin \zeta \]
\[W_R = e^{i\omega} (-W_1 \sin \zeta + W_2 \cos \zeta) \]
\[\frac{3}{4} - \rho = \frac{3}{2} \zeta^2 \]
\[1 - P_{\mu} \xi = 4 \left(\zeta^2 + \zeta \left(\frac{M_1}{M_2} \right)^2 + \left(\frac{M_1}{M_2} \right)^4 \right) \]

• …..
What is required?

Must:

- Understand sources of muon depolarization
 -- P_μ and ξ come as a product
- Determine positron yield vs. momentum and angle
 -- All three parameters
to within a few parts in 10^4
Surface muon beam

500 MeV proton beam

Time Expansion Chamber (TEC)

π^+ + μ^+ + ν \rightarrow 500 \text{ MeV} \text{ proton beam}

Carl Gagliardi – Final Results on Muon Decay with TWIST
Carl Gagliardi – Final Results on Muon Decay with **TWIST**
Detector array

Variable density gas degrader

PC1-4
DC1-8
DC9-22
PC5-6
PC7-8
DC23-36
DC37-44
PC9-12
Event topologies

- Many events are simple
 - A muon enters and stops
 - The decay positron leaves
- Other events aren’t simple

- We must be able to handle all kinds
2-d momentum-angle spectrum

Acceptance of the **TWIST** spectrometer
Fitting the data distributions

\[n_i(\alpha_{\text{data}}) = n_i(\alpha_{\text{MC}}) + \frac{\partial n_i}{\partial \alpha} \Delta \alpha, \]

\[\alpha = [\rho, \eta, \xi, \xi\delta] \]

- Fit data to sum of a MC base spectrum plus MC-generated derivative distributions.
- Decay distribution is linear in the muon decay parameters, so this is exact, no matter what values (\(\alpha_{\text{MC}}\)) are used in the MC base spectrum.

\(\alpha_{\text{MC}}\) hidden \(\Rightarrow\) blind analysis
Physics data sets

• **Fall 2002**
 – Test data-taking procedures and develop analysis techniques
 – First physics results – ρ and δ
 – Graphite-coated Mylar target not suitable for $P_\mu \xi$

• **Fall 2004**
 – Aluminum target and Time Expansion Chamber enabled first $P_\mu \xi$ measurement
 – Improved determinations of ρ and δ

• **2006-07**
 – Both silver (2006) and aluminum (2007) targets
 – Ultimate **TWIST** precision for ρ, δ, and $P_\mu \xi$
 – Also measured negative muon decay-in-orbit when bound to Al
Data distributions from 2002 and 2004

Angle-integrated spectrum from the 2002 data

Asymmetry vs momentum from the 2004 data
TWIST results before now

A global analysis that combined the first TWIST ρ and δ results and a concurrent measurement from PSI of the e^+ transverse polarization (PRL 94, 021802) together with all pre-TWIST muon decay parameter measurements found:

$$\eta = -0.0036 \pm 0.0069$$
How to do better?

- **TWIST** is a *systematics-dominated experiment*

- **Must have:**
 - Improved data-taking procedures
 - Better understanding of the detector
 - Improved analysis techniques

- **Leading systematics in our previous $P_{\mu\xi}$ measurement**
 - Muon depolarization while entering the solenoid
 - Time-dependent muon depolarization in the stopping target

- **Leading systematics in our previous ρ and δ measurements**
 - Chamber response
 - Momentum calibration
 - Positron interactions
At target, $P_\mu = 0.9975$

Muons can be depolarized as they cross flux lines when entering the solenoid.
Validating the fringe field effects

- The average muon beam trajectory inside the detector is sensitive to the muon transverse momentum
- Identify changes in muon beam properties between TEC measurements
- Comparisons between nominal and mis-steered beams
 - Observed muon beam trajectories within the detector
 - Difference in the decay asymmetry in data vs that predicted by the Monte Carlo
Ensuring muons stop in the metal target

- Muons that stop in gas can depolarize through muonium formation
- Use muon energy depositions near the stopping target to reject those that stop in gas
Measuring depolarization after stopping

High purity (>99.999% purity) Al and Ag targets

Subsidiary μ^+SR study: no “fast depolarisation” down to 5 ns

$P_\mu(t) = P_\mu(0) \exp(-\lambda t)$

Previous TWIST

New TWIST

λ (ms$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous TWIST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New TWIST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equal-time contours

- Direct determination of the effective distance vs time relation
- Accounts for small plane-to-plane fabrication differences
- Compensates for small (few keV) biases in the helix fitter
- Improved momentum resolution (near the endpoint)
 - Was ~ 69 keV/sin(θ) in Monte Carlo and ~ 74 keV/sin(θ) in data
 - Now ~ 58 keV/sin(θ) in both
Momentum calibration

- The endpoint at 52.83 MeV/c provides a calibration point
- Improvements in the endpoint fitter reduced previous small biases
- Find a ~10 keV/c difference in the absolute calibration of the data vs Monte Carlo
- Propagate this through the entire spectrum twice
 - Shift by a constant
 - Rescale the momentum axis
Bremsstrahlung

- Leading systematic for ρ and δ
- Two separate measurements
 - “Upstream stops”
 - “Broken” decay tracks
- Consistent results validate bremsstrahlung simulation in our GEANT3 Monte Carlo at the 2.5% level
Monte Carlo reproduces the data very well, even very far outside the fiducial region
Reproducibility of the results

- 14 separate measurements under various experimental conditions
- All 14 data sets are used for ρ and δ, $\chi^2 = 14.0$ and 17.7
- 9 of the data sets are used for $P_\mu \xi$, $\chi^2 = 9.6$
Total uncertainty budget – ρ and δ

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>$\rho \times 10^{-4}$</th>
<th>$\delta \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positron interactions</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>External uncertainties</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Momentum calibration</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Chamber response</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Beam stability</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Systematics added in quadrature</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>3.0</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Comparison to 2004 leading systematics:
- Down factor of ~3

Similar magnitude:
- Down factor of ~3

Down factor of ~2
Total uncertainty budget – $P_{\mu} \xi$

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>$P_{\mu} \xi$ ($\times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depolarization in fringe field</td>
<td>+15.8, -4.0</td>
</tr>
<tr>
<td>Depolarization in stopping material</td>
<td>3.2</td>
</tr>
<tr>
<td>Background muons</td>
<td>1.0</td>
</tr>
<tr>
<td>Depolarization in production target</td>
<td>0.3</td>
</tr>
<tr>
<td>Chamber response</td>
<td>2.3</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.5</td>
</tr>
<tr>
<td>Momentum calibration</td>
<td>1.5</td>
</tr>
<tr>
<td>External uncertainties</td>
<td>1.2</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>0.7</td>
</tr>
<tr>
<td>Beam stability</td>
<td>0.3</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>0.2</td>
</tr>
<tr>
<td>Systematics added in quadrature</td>
<td>+16.5, -6.2</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>3.5</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>+16.9, -7.2</td>
</tr>
</tbody>
</table>

Comparison to 2004 leading systematics

- Down factor of ~3
- Down factor of ~4

Systematics added in quadrature
Final **TWIST** results

- $\rho = 0.74991 \pm 0.00009$ (stat) ± 0.00028 (syst)
- $\delta = 0.75072 \pm 0.00016$ (stat) ± 0.00029 (syst)
- $P_\mu \xi = 1.00084 \pm 0.00035$ (stat) $+0.00165$ -0.00063 (syst)

- Correlations:
 - $\text{Corr}(\rho, \delta) = +0.69$
 - $\text{Corr}(\rho, P_\mu \xi) = -0.06$ (for $P_\mu \xi$ high) and -0.14 (for $P_\mu \xi$ low)
 - $\text{Corr}(\delta, P_\mu \xi) = -0.18$ (for $P_\mu \xi$ high) and -0.43 (for $P_\mu \xi$ low)

- Can combine the above to find $P_\mu \xi \delta/\rho = 1.00192^{+0.00167}_{-0.00063}$
 - This is asymmetry at endpoint \rightarrow must be ≤ 1
 - This 2.9σ surprise is currently under investigation
Implications for the muon decay matrix element

- The final **TWIST** results have been included in a new muon decay global analysis together with all previous muon decay parameter measurements.
- Find significantly tighter 90% c.l. upper limits on the coupling of right-handed muons to right- or left-handed electrons:
 - $|g^{S}_{RR}| < 0.031$\footnote{Factor of ~2 smaller than pre-TWIST values}
 - $|g^{V}_{RR}| < 0.015$
 - $|g^{S}_{LR}| < 0.041$
 - $|g^{V}_{LR}| < 0.018$\footnote{Factor of ~3 smaller than pre-TWIST values}
 - $|g^{T}_{LR}| < 0.012$
- New limit on right-handed muon couplings: $Q_{\mu R} < 5.8 \times 10^{-4}$ (90% c.l.)\footnote{Factor of ~9 smaller than pre-TWIST value}
- Uncertainty for η reduced by 1/3 compared to 2005 global analysis
 - $\eta = -0.0033 \pm 0.0046$
 - Important for the determination of G_{F}
Implications for left-right symmetric models

\[W_L = W_1 \cos \zeta + W_2 \sin \zeta \quad W_R = e^{i\omega}(-W_1 \sin \zeta + W_2 \cos \zeta) \]

- Significantly improved limits on both \(W_R \) mass and \(L-R \) mixing angle \(\zeta \)
- Many other limits also apply if \(V_{ud}^R \) is near 1; for example:
 - Direct production at the Tevatron finds \(M(W_R) > 1 \) TeV
 - \(0^+ \rightarrow 0^+ \) nuclear beta decay finds \(|\zeta| < 0.0005 \)
- **TWIST** limits in the general case make no assumption about \(V_{ud}^R \)
Conclusions

Carl Gagliardi – Final Results on Muon Decay with TWIST
The TWIST Collaboration (http://twist.triumf.ca)

TRIUMF
Ryan Bayes*†
Yuri Davydov
Wayne Faszer
Makoto Fujiwara
David Gill
Alexander Grossheim
Peter Gumplinger
Anthony Hillairet*†
Robert Henderson

Jingliang Hu
Glen Marshall
Dick Mischke
Konstantin Olchanski
Art Olin†
Robert Openshaw
Jean-Michel Poutissou
Grant Sheffer
Bill Shin‡‡

Alberta
Andrei Gaponenko*
Robert MacDonald*

British Columbia
James Bueno*
Mike Hasinoff

Texas A&M
Carl Gagliardi
Bob Tribble

Regina
Ted Mathie
Roman Tacik

Kurchatov Institute
Vladimir Selivanov

Montréal
Pierre Depommier

Supported by NSERC, the National Research Council of Canada, the Russian Ministry of Science, and the US Department of Energy. Computing resources provided by WestGrid.
Coupling constants and Michel parameters

- The Michel parameters are bilinear combinations of the coupling constants:

\[
\rho = \frac{3}{4} - \frac{3}{4} \left| g_{RL}^V \right|^2 + \left| g_{LR}^V \right|^2 + 2 \left| g_{RL}^T \right|^2 + 2 \left| g_{LR}^T \right|^2 \\
+ \Re \left(g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*} \right)
\]

\[
\eta = \frac{1}{2} \Re \left(g_{RR}^V g_{LL}^S + g_{LL}^V g_{RR}^S + g_{RL}^V (g_{LR}^S + 6 g_{LR}^T) + g_{LR}^V (g_{RL}^S + 6 g_{RL}^T) \right)
\]

\[
\xi = 1 - \frac{1}{2} \left| g_{LR}^S \right|^2 - \frac{1}{2} \left| g_{RR}^S \right|^2 - 4 \left| g_{RL}^V \right|^2 + 2 \left| g_{LR}^V \right|^2 - 2 \left| g_{RR}^V \right|^2 \\
+ 2 \left| g_{LR}^T \right|^2 - 8 \left| g_{RL}^T \right|^2 + 4 \Re \left(g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right)
\]

\[
\xi \delta = \frac{3}{4} - \frac{3}{8} \left| g_{RR}^S \right|^2 - \frac{3}{8} \left| g_{LR}^S \right|^2 - \frac{3}{2} \left| g_{RR}^V \right|^2 - \frac{3}{4} \left| g_{RL}^V \right|^2 - \frac{3}{4} \left| g_{LR}^V \right|^2 \\
- \frac{3}{2} \left| g_{RL}^T \right|^2 - 3 \left| g_{LR}^T \right|^2 + \frac{3}{4} \Re \left(g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right)
\]
Precision detector construction

- Very low mass (~$10^{-4} X_0$ per U-V pair), high precision chambers
- Longitudinal alignment by engineering
- Transverse alignment using particle tracks
- >5000 wires, efficiency >99.8%

To a few parts in 10^5
“Good muons” vs “bad muons”

- Positive muons can arise from pion decay at rest or in flight
 - At rest ("surface") muons have large (~1) negative polarization
 - In flight ("cloud") muons have small (~20%) positive polarization
- In TWIST, we (usually) want the former and not the latter
- Achieved by cutting on the muon arrival time at the spectrometer
Previous muon decay parameter results

- From Fall, 2002 run:
 - \(\rho = 0.75080 \pm 0.00032 \) (stat) \(\pm 0.00097 \) (syst) \(\pm 0.00023 \) (\(\eta \))
 PRL 94, 101805
 - \(\delta = 0.74964 \pm 0.00066 \) (stat) \(\pm 0.00112 \) (syst)
 PRD 71, 071101
- New global analysis (PRD 72, 073002) using the \(\rho \) and \(\delta \) results together with previous measurements, plus recent \(e^+ \) transverse polarization measurements from PSI (PRL 94, 021802):
 - Significant improvements in the limits for \(g^{S,V,T}_{LR} \)
 - \(\eta = -0.0036 \pm 0.0069 \)
- From Fall, 2004 run:
 - \(P_{\mu \xi} = 1.0003 \pm 0.0006 \) (stat) \(\pm 0.0038 \) (syst)
 PRD 74, 072007
 - \(\rho = 0.75014 \pm 0.00017 \) (stat) \(\pm 0.00044 \) (syst) \(\pm 0.00011 \) (\(\eta \))
 - \(\delta = 0.75067 \pm 0.00030 \) (stat) \(\pm 0.00067 \) (syst)
 PRD 78, 032010
- Factors of 2 (\(P_{\mu \xi} \)) to 5 (\(\rho, \delta \)) increased precision vs. pre-TWIST
Table II. Summary of systematic uncertainties by category.

<table>
<thead>
<tr>
<th>Category</th>
<th>Δρ</th>
<th>Δδ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber response</td>
<td>0.00029</td>
<td>0.00052</td>
</tr>
<tr>
<td>Energy scale</td>
<td>0.00029</td>
<td>0.00041</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>0.00016</td>
<td>0.00009</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.00002</td>
<td>0.00003</td>
</tr>
<tr>
<td>Alignment and lengths</td>
<td>0.00003</td>
<td>0.00003</td>
</tr>
<tr>
<td>Beam intensity</td>
<td>0.00001</td>
<td>0.00002</td>
</tr>
<tr>
<td>Correlations with η</td>
<td>0.00011</td>
<td>0.00001</td>
</tr>
<tr>
<td>Theory</td>
<td>0.00003</td>
<td>0.00001</td>
</tr>
<tr>
<td>Total</td>
<td>0.00046</td>
<td>0.00067</td>
</tr>
</tbody>
</table>

Table III. Contributions to the systematic uncertainty for $P_{\mu,\xi}$.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depolarization in fringe field (ave)</td>
<td>0.0034</td>
</tr>
<tr>
<td>Depolarization in stopping material (ave)</td>
<td>0.0012</td>
</tr>
<tr>
<td>Chamber response (ave)</td>
<td>0.0010</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>0.0003</td>
</tr>
<tr>
<td>Positron interactions (ave)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Depolarization in production target</td>
<td>0.0002</td>
</tr>
<tr>
<td>Momentum calibration</td>
<td>0.0002</td>
</tr>
<tr>
<td>Upstream-downstream efficiency</td>
<td>0.0002</td>
</tr>
<tr>
<td>Background muon contamination (ave)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Beam intensity (ave)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Michel parameter η</td>
<td>0.0001</td>
</tr>
<tr>
<td>Theoretical radiative corrections</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Negative muon decay-in-orbit

- Future $\mu \rightarrow e$ conversion experiments plan to study negative muons bound to Al
- Most precise measurement ever of the muon decay-in-orbit spectrum
- Theoretical predictions include higher-order contributions from the muon+nucleus potential
- Need to include the $O(\alpha)$ radiative corrections that arise from the interaction between the muon and the outgoing electron
Tracking (in)efficiency

- Measure the tracking efficiency with “upstream stops” data
 - Reconstruct a track with a particular \((p, \cos(\theta))\) in one half
 - Do we reconstruct a track in the other half?
- Inefficiency in data is <0.5% throughout the fiducial region
- Inefficiency in data and Monte Carlo match to <0.05%
Fringe field and mis-steered beam

Move beam away from optimum position and/or angle to observe change in polarization:

- Comparison I: mis-steer y direction by 28 mrad
 Find: $\Delta P_\mu = -105 \pm 9 \times 10^{-4}$

- Comparison II: mis-steer x position by 10 mm and direction by 10 mrad
 Find: $\Delta P_\mu = -62 \pm 8 \times 10^{-4}$

- Comparison III: leave TEC in to introduce scattering
 Find: $\Delta P_\mu = -18 \pm 9 \times 10^{-4}$

Compare differences with simulation to check fringe field systematic
Sensitivity to fringe field transverse components

Estimate of error

Opera field

data minus simulation (number of σ)

$0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 \quad 1.5$

f, scale factor applied to B_x and B_y

Carl Gagliardi – Final Results on Muon Decay with TWIST
Bremsstrahlung

- Leading systematic for ρ and δ
- Two separate measurements
 - “Upstream stops”
 - “Broken tracks”
- Consistent results validate bremsstrahlung simulation in our GEANT3 Monte Carlo at the 2.5% level
Why are ρ and δ systematics correlated?

- ρ and δ involve the momentum-dependence of the yield and asymmetry
- They have:
 - Same upstream shapes
 - Opposite downstream shapes
- Effects that
 - Distort the momentum, and
 - Couple to the yield
- Distort ρ and δ similarly
- Example: bremsstrahlung

Derivatives at $\cos(\theta) = \pm 0.75$
Why are δ and $P_\mu \xi$ anti-correlated?

- Anti-correlation between statistical uncertainties for δ and $P_\mu \xi$
- Three types of systematics influence the asymmetry measurements
 - Distort P_μ; only impact $P_\mu \xi$
 - Distort contribution of $P_\mu \xi \delta$ derivative; only impact δ
 - Distort contribution of $P_\mu \xi$ derivative; impact BOTH $P_\mu \xi$ and δ

In TWIST, the fit parameters are $P_\mu \xi$ and $P_\mu \xi \delta$

$$\delta = \frac{P_\mu \xi \delta}{P_\mu \xi}$$
Muon decay parameters in the global analysis

(Phys Rev D 72, 073002)

\[Q_{RR} = \frac{1}{4} |g_{RR}^{S}|^2 + |g_{RR}^{V}|^2, \]
\[Q_{LR} = \frac{1}{4} |g_{LR}^{S}|^2 + |g_{LR}^{V}|^2 + 3|g_{LR}^{T}|^2, \]
\[Q_{RL} = \frac{1}{4} |g_{RL}^{S}|^2 + |g_{RL}^{V}|^2 + 3|g_{RL}^{T}|^2, \]
\[Q_{LL} = \frac{1}{4} |g_{LL}^{S}|^2 + |g_{LL}^{V}|^2, \]
\[B_{LR} = \frac{1}{16} |g_{LR}^{S}|^2 + 6g_{LR}^{T}|^2 + |g_{LR}^{V}|^2, \]
\[B_{RL} = \frac{1}{16} |g_{RL}^{S}|^2 + 6g_{RL}^{T}|^2 + |g_{RL}^{V}|^2, \]
\[I_\alpha = \frac{1}{4} [g_{LR}^{V}(g_{RL}^{S} + 6g_{RL}^{T})^* + (g_{RL}^{V})^*(g_{LR}^{S} + 6g_{LR}^{T})] \]
\[= (\alpha + i\alpha')/2A, \]
\[I_\beta = \frac{1}{2} [g_{LL}^{V}(g_{RR}^{S})^* + (g_{RR}^{V})^*g_{LL}^{S}] = -2(\beta + i\beta')/A. \]

0 \leq Q_{\epsilon\mu} \leq 1, \quad \text{where } \epsilon, \mu = R, L,

0 \leq B_{\epsilon\mu} \leq Q_{\epsilon\mu}, \quad \text{where } \epsilon\mu = RL, LR,

|I_\alpha|^2 \leq B_{LR}B_{RL}, \quad |I_\beta|^2 \leq Q_{LL}Q_{RR},

Q_{RR} + Q_{LR} + Q_{RL} + Q_{LL} = 1.

\[\rho = \frac{3}{4} + \frac{1}{4}(Q_{LR} + Q_{RL}) - (B_{LR} + B_{RL}), \]
\[\xi = 1 - 2Q_{RR} - \frac{10}{3}Q_{LR} + \frac{4}{3}Q_{RL} + \frac{16}{3}(B_{LR} - B_{RL}), \]
\[\xi\delta = \frac{3}{4} - \frac{3}{2}Q_{RR} - \frac{7}{4}Q_{LR} + \frac{1}{4}Q_{RL} + (B_{LR} - B_{RL}), \]
\[\xi' = 1 + 2Q_{RR} - 2Q_{RL}, \]
\[\xi'' = 1 - \frac{10}{3}(Q_{LR} + Q_{RL}) + \frac{16}{3}(B_{LR} + B_{RL}), \]
\[\eta = \frac{1}{3}(Q_{LR} + Q_{RL}) + \frac{2}{3}(B_{LR} + B_{RL}), \]
\[\eta' = (\alpha - 2\beta)/A, \quad \eta'' = (3\alpha + 2\beta)/A. \]

• The global analysis combines the final TWIST results with all non-TWIST muon decay parameter measurements
• The fit parameters are Q_{RR}, Q_{LR}, Q_{RL}, B_{LR}, B_{RL}, α/A, β/A, α'/A, β'/A