TWIST – the TRIUMF Weak Interaction Symmetry Test

A precision study of the μ^+ decay spectrum

* Designed to achieve ~ 0.01% in the *shape* of the μ decay spectrum

Several data sets of 10⁹ events each

A precision test of the weak interaction in the Standard Model

D.R.Gill TRIUMF

drgill@triumf.ca

Outline

Motivation
Overview of the experiment
Analysis status
Timeline

The TWIST Collaboration

TRIUMF

Ryan Bayes[†] Yuri Davydov **Jaap Doornbos Wayne Faszer David Gill Peter Gumplinger Robert Henderson Jingliang Hu** John A. Macdonald § **Glen Marshall** Dick Mischke^{††} **Art Olin Robert Openshaw Tracy Porcelli**[‡] Jean-Michel Poutissou **Renee Poutissou Grant Sheffer** Bill Shin **‡ ‡**

Alberta

Andrei Gaponenko Peter Kitching Rob MacDonald Maher Quraan *Nathan Rodning §* John Schaapman Glen Stinson

British Columbia Blair Jamieson Mike Hasinoff

Montreal

Pierre Depommier

Regina

Ted Mathie Roman Tacik

Kurchatov Institute

Vladimir Selivanov Vladimir Torokhov

Texas A&M

Carl Gagliardi Jim Musser Robert Tribble Maxim Vasiliev

Valparaiso

Don Koetke Paul Nord Shirvel Stanislaus

§ Deceased

Graduate Students

 ‡ ‡ also Saskatchewan

† † also LANL

TWIST Motivation – testing the Standard Model

... Most general interaction does not presuppose the W

$$rate \sim |\sum_{\substack{\gamma=S,V,T\\i,j=R,L}} g_{ij}^{\gamma} \langle \overline{\psi}_{ei} | \Gamma^{\gamma} | \psi_{\nu_{e}} \rangle \langle \overline{\psi}_{\nu_{\mu}} | \Gamma_{\gamma} | \psi_{\mu_{j}} \rangle |^{2}$$

- S, V, T = scalar, vector or tensor interactions
- *R*, *L* = right and left handed leptons (*e*, μ , or τ)

Expanded in terms what have become known as the Michel parameters

$$rate \sim x^{2} \left[3 - 3x + \frac{2}{3}\rho(4x - 3) + 3\eta x_{o} \frac{1 - x}{x} + P_{\mu}\xi\cos(\theta) \left(1 - x + \frac{2}{3}\delta(4x - 3) \right) \right]$$
These shape parameters of the spectrum are what TWIST is studying!
Modified by radiative corrections
Now several calculations
to 2nd order exist
See Arbuzov JHEP0303:063,2003
{hep-ph/0206036}
e⁺ angle
e⁺ Reduced Energy

(Cosine)

The Michel Parameter - ρ

The parameter ρ largely determines the shape of the positron energy spectrum

1.2]

1

 0.8^{\pm}

 0.6^{-1}

 0.4^{-1}

0.2

0

0.2 0.4 Legend

x 0.6

0.8

 $\rho - \frac{3}{4} \equiv \frac{3}{4} \left[-|g_{LR}^{V}|^{2} - |g_{RL}^{V}|^{2} - 2(|g_{LR}^{T}|^{2} + |g_{RL}^{T}|^{2}) \right]$ $+ \frac{3}{4} \left[\operatorname{Re}(g_{LR}^{S}g_{LR}^{T*}) + \operatorname{Re}(g_{LR}^{S*}g_{LR}^{T}) + \operatorname{Re}(g_{RL}^{S}g_{RL}^{T*}) + \operatorname{Re}(g_{RL}^{S*}g_{RL}^{T}) \right]$ - positive definite terms $\rightarrow \text{fewer required experiments}$ $- \text{can conspire so } \rho = \frac{3}{4}$ $\rightarrow \text{measure parameters simultaneously}$ The effect of large deviations in ρ

on the shape of the energy spectrum. The effect shown is roughly **500** times the TWIST sensitivity

Left/Right Symmetric Extensions of the Standard Model

Two weak bosons with mass eigenstates M_1 and M_2

$$\begin{split} M_{W_L} &= M_1 \cos(\zeta) - M_2 \sin(\zeta) \\ M_{W_R} &= e^{i\omega} \big(M_1 \cos(\zeta) + M_2 \sin(\zeta) \big) \end{split}$$

Parity violation at low energy is presumably due to

$$\frac{m_{W_R}}{m_{W_L}} >> 1$$

In general, the models may include a CP violating phase (ω), and a left/right mixing parameter ζ

For Left/Right Symmetric extensions

For $g_{LR}^V = g_{RL}^V \approx \zeta \ll 1$ $g_{RR}^V \approx \left(\frac{m_L}{m_R}\right)^2$

$$\rho \approx \frac{3}{4} \left(1 - 2\zeta^2 \right)$$

$$\xi \approx 1 - 2 \left(\frac{m_L}{m_R} \right)^4 - 2\zeta^2$$

$$\approx \frac{4}{3} \rho - 2 \left(\frac{m_L}{m_R} \right)^4$$

$$\delta \approx \frac{3}{4}$$

$$\eta \approx 0$$

ρ is sensitive to the Left/Right mixing

 ξ to the mixing and to the W_Rmass

 δ and η are unchanged by Left/Right extensions with manifest symmetry

A measurement of ρ and ξ determines the W_R mass and its mixing

Left/Right Mixing constraints – Anticipated TWIST Sensitivity

Complementary

 $\beta \text{ decay} \qquad \left(\frac{g_R}{g_L}\right)^{-1} \left(\frac{V_{ud}^R}{V_{ud}^L}\right)^2 \left(\frac{M_L}{M_R}\right)^{-1}$

p pbar collider $\left(\frac{g_R}{g_L}\right)^2 \left(\frac{V_{ud}^R}{V_L^L}\right)^2 function \left(\frac{M_L}{M_L}\right)$

 $\mu \operatorname{decay} \quad \left(\frac{g_R}{g_L}\right)^4 \left| 1 + \left(\frac{V_{ud}^R}{V_{ud}^L}\right)^2 \left| \left(\frac{M_L}{M_R}\right)^4 \right| \right.$

The Experiment

- Highly polarized muons enter the spectrometer one at a time
- Unbiased trigger on muon entering system
- Data sets of 10⁹ muon decay events in roughly two weeks (modern computing)
- The experiment is systematics limited. The high data rate is a must for systematics studies

The large acceptance makes possible measurements of Michel parameters under differing conditions – therefore improving the reliability of the result.

Chambers & half detector

Planar drift chambers sample positron track

Use 44 drift planes, and 12 PC planes

Typical decay event

Analysis Concept

Fit real data to Monte Carlo generated data many effects of reconstruction cancel •MC must reproduce the detector response well **TWIST detector thin so effects small Useful for systematics search/study** systematics comparisons can be done directly fit data to data or MC to MC Hide values of ρ , δ , ξ and η used in MC generation can be done in straightforward way

avoids human bias in analysis of systematics

Technology WestGrid: 1000*3GHz Spectrum is linear in ρ , η , ξ and $\xi\delta$ so fit $N_{i}(\lambda_{data}) = N_{i}(\lambda_{MC}) + \frac{\partial N_{i}}{\partial \lambda}(\lambda_{data} - \lambda_{MC})$ where $\lambda_{data} - \lambda_{MC} = \Delta \lambda$ is the fit parameter N_i - number in momentum/angle bin *i* Generate µ beam, track to stop, λ_{MC} hidden get e⁺ kinematics from box, ρ,δ,ξ.η track e⁺ through detector Fit data to this spectrum **Open Safe Determine** $\Delta \rho$, $\Delta \delta$, $\Delta \xi$ and $\Delta \eta$

Use in systematics studies

Systematics study status

Sample from correlated data to data fits

	10-3	ρ	δ	لح	η	
Alignment	Translation	0.10	0.08	0.13	5.8	
	Rotation	0.07	0.05	0.28	3.9	
Chamber	HV	0.05	0.03	0.06	2.6	
	Cell Geometry	0.28	0.21	0.36	16.	
	Gas Density	0.15	0.11	0.20	8.5	
Calibration	Trigger time	0.13	0.09	0.16	7.0	

Long list at this level – No showstopper found

session J11 ρ – (Musser) δ– (Gaponenko)

Timeline

 $6x10^9$ muon decay events are in hand complete 10⁻³ analysis this summer! • publish determination of ρ and δ ♦ 2004 data run • data on $\mathbf{P}_{\mu}\xi$ at 10⁻³ (and η ?) this summer/fall At least 3 PhD's granted by 2005 Final parts in10⁻⁴ data & publications:2005/2006 Need More Graduate Students Now

Summary

The TWIST experiment is near end of phase 1
Anticipate preliminary measurements at ~0.1% of:
\$\vee\$\rho\$ and δ (this summer)
\$\vee\$P_\mu\$ (Data during the summer/fall of 2004)
\$\vee\$Final precision on \$\rho\$ and \$\delta\$ and \$\vee\$P_\mu\$\$ at ~ ±0.02%

TWIST is exploring significant new space where evidence may be found to challenge the standard model

For left/right symmetric models, TWIST has a mass reach which is comparable to - and which complements
 β decay experiments and direct searches at the Tevatron