TWIST – the TRIUMF Weak Interaction Symmetry Test

A precision study of the \(\mu^+ \) decay spectrum

- Designed to achieve \(\sim 0.01\% \) in the \textit{shape} of the \(\mu \) decay spectrum
- Several data sets of \(10^9 \) events each
- A precision test of the weak interaction in the Standard Model

D.R. Gill TRIUMF
drgill@triumf.ca
Outline

- Motivation
- Overview of the experiment
- Analysis status
- Timeline
The **TWIST** Collaboration

TRIUMF
- Ryan Bayes†
- Yuri Davydov
- Jaap Doornbos
- Wayne Faszer
- David Gill
- Peter Gumplinger
- Robert Henderson
- Jingliang Hu
- *John A. Macdonald §*
- Glen Marshall
- Dick Mischke‡‡
- Art Olin
- Robert Openshaw
- Tracy Porcelli‡
- Jean-Michel Poutissou
- Renee Poutissou
- Grant Sheffer
- Bill Shin ‡‡

Alberta
- Andrei Gaponenko
- Peter Kitching
- Rob MacDonald
- Maher Quraan
- *Nathan Rodning §*
- John Schaapman
- Glen Stinson

British Columbia
- Blair Jamieson
- Mike Hasinoff

Montreal
- Pierre Depommier

Regina
- Ted Mathie
- Roman Tacik

Kurchatov Institute
- Vladimir Selivanov
- Vladimir Torokhov

Texas A&M
- Carl Gagliardi
- Jim Musser
- Robert Tribble
- Maxim Vasiliev

Valparaiso
- Don Koetke
- Paul Nord
- Shirvel Stanislaus

Graduate Students
- † also UVic
- ‡ also UNBC
- ‡‡ also Saskatchewan
- † † also LANL

§ Deceased
TWIST Motivation – testing the Standard Model

... Most general interaction does not presuppose the W

\[
\text{rate} \sim \left| \sum_{\gamma = S, V, T} g_{ij}^{\gamma} \langle \overline{\psi}_{ei}^{\gamma} | \Gamma^{\gamma} | \psi_{e} \rangle \langle \overline{\psi}_{\nu_{\mu}}^{\gamma} | \Gamma^{\gamma} | \psi_{\mu} \rangle \right|^2
\]

- $S, V, T =$ scalar, vector or tensor interactions
- $R, L =$ right and left handed leptons ($e, \mu, or \tau$)
Expanded in terms what have become known as the Michel parameters

\[\text{rate} \sim x^2 \left[3 - 3x + \frac{2}{3} \rho(4x - 3) + 3\eta x_0 \frac{1-x}{x} + P_\mu \xi \cos(\theta) \left(1 - x + \frac{2}{3} \delta(4x - 3) \right) \right] \]

These shape parameters of the spectrum are what TWIST is studying!

Modified by radiative corrections. Now several calculations to 2nd order exist.

See Arbuzov JHEP0303:063,2003
{hep-ph/0206036}
The Michel Parameter - ρ

The parameter ρ largely determines the shape of the positron energy spectrum

$$\rho - \frac{3}{4} = \frac{3}{4} \left[- |g_{LR}^V|^2 - |g_{RL}^V|^2 - 2(|g_{LR}^T|^2 + |g_{RL}^T|^2) \right]$$

$$+ \frac{3}{4} \left[\text{Re}(g_{LR}^S g_{LR}^{T*}) + \text{Re}(g_{LR}^{S*} g_{LR}^T) + \text{Re}(g_{RL}^S g_{RL}^{T*}) + \text{Re}(g_{RL}^{S*} g_{RL}^T) \right]$$

- positive definite terms
 → fewer required experiments
- can conspire so $\rho = \frac{3}{4}$
 → measure parameters simultaneously

The effect of large deviations in ρ on the shape of the energy spectrum. The effect shown is roughly 500 times the TWIST sensitivity.
Anticipated TWIST sensitivity to R-H currents in muon decay

\[
Q^\mu_R = Q_{RR} + Q_{LR} = \frac{1}{4} |g^S_{LR}|^2 + |g^V_{LR}|^2 + 3 |g^T_{LR}|^2 + \frac{1}{4} |g^S_{RR}|^2 + |g^V_{RR}|^2
\]

\[
Q^\mu_R = \frac{1}{2} \left(1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right)
\]
Left/Right **Symmetric Extensions of the Standard Model**

Two weak bosons with mass eigenstates M_1 and M_2

\[
M_{WL} = M_1 \cos(\zeta) - M_2 \sin(\zeta)
\]
\[
M_{WR} = e^{i\omega} (M_1 \cos(\zeta) + M_2 \sin(\zeta))
\]

Parity violation at low energy is presumably due to

\[
\frac{m_{WR}}{m_{WL}} \gg 1
\]

In general, the models may include a CP violating phase (ω), and a left/right mixing parameter ζ
For Left/Right Symmetric extensions

For \(g_{LR}^V = g_{RL}^V \approx \xi \ll 1 \quad \text{and} \quad g_{RR}^V \approx \left(\frac{m_L}{m_R} \right)^2 \)

\[
\begin{align*}
\rho & \approx \frac{3}{4} \left(1 - 2\xi^2 \right) \\
\xi & \approx 1 - 2 \left(\frac{m_L}{m_R} \right)^4 - 2\xi^2 \\
& \approx \frac{4}{3} \rho - 2 \left(\frac{m_L}{m_R} \right)^4 \\
\delta & \approx \frac{3}{4} \\
\eta & \approx 0
\end{align*}
\]

- \(\rho \) is sensitive to the Left/Right mixing
- \(\xi \) to the mixing and to the \(W_R \) mass
- \(\delta \) and \(\eta \) are unchanged by Left/Right extensions with manifest symmetry

A measurement of \(\rho \) and \(\xi \) determines the \(W_R \) mass and its mixing
Left/Right Mixing constraints – Anticipated TWIST Sensitivity

Anticipated TWIST sensitivity due only to the $P_\mu \xi$ measurement

(D0 & CDF with various assumptions re CKM$_R$

Manifest l/r symmetry

Anticipated TWIST ρ result

Discovery potential

W_R Mass (GeV)
Complementary

β decay

$$\left(\frac{g_R}{g_L} \right)^4 \left(\frac{V_{ud}^R}{V_{ud}^L} \right)^2 \left(\frac{M_L}{M_R} \right)^4$$

p pbar collider

$$\left(\frac{g_R}{g_L} \right)^2 \left(\frac{V_{ud}^R}{V_{ud}^L} \right)^2 \text{ function} \left(\frac{M_L}{M_R} \right)$$

μ decay

$$\left(\frac{g_R}{g_L} \right)^4 \left[1 + \left(\frac{V_{ud}^R}{V_{ud}^L} \right)^2 \right] \left(\frac{M_L}{M_R} \right)^4$$

β decay

p pbar collider

μ decay
The Experiment

- Highly polarized muons enter the spectrometer one at a time
- Unbiased trigger on muon entering system
- Data sets of 10^9 muon decay events in roughly two weeks (modern computing)
- The experiment is **systematics limited**. The high data rate is a must for systematics studies.

The large acceptance makes possible measurements of Michel parameters under differing conditions – therefore improving the reliability of the result.
Chambers & half detector

Planar drift chambers sample positron track

Use 44 drift planes, and 12 PC planes
Typical decay event
Analysis Concept

Fit real data to Monte Carlo generated data

• many effects of reconstruction cancel
• MC must reproduce the detector response well

TWIST detector thin so effects small

Useful for systematics search/study

• systematics comparisons can be done directly

fit data to data or MC to MC

Hide values of ρ, δ, ξ and η used in MC generation

• can be done in straightforward way
• avoids human bias in analysis of systematics
Spectrum is linear in ρ, η, ξ and $\xi\delta$ so fit

$$N_i(\lambda_{\text{data}}) = N_i(\lambda_{\text{MC}}) + \frac{\partial N_i}{\partial \lambda}(\lambda_{\text{data}} - \lambda_{\text{MC}})$$

where $\lambda_{\text{data}} - \lambda_{\text{MC}} = \Delta \lambda$ is the fit parameter

N_i - number in momentum/angle bin i

Generate μ beam, track to stop, get e^+ kinematics from box, track e^+ through detector

Fit data to this spectrum

Determine $\Delta \rho$, $\Delta \delta$, $\Delta \xi$ and $\Delta \eta$
Use in systematics studies

Type 1
(Monte Carlo or data)
Analysis 1

Fit mc to mc or data to data

Type 2
(Monte Carlo or data)
Analysis 1

Fit uncorrelated samples
Detect & evaluate systematic

Type 1
(Monte Carlo or data)
Analysis 1

Fit correlated samples
Enhance & evaluate systematic
Systematics study status

Sample from correlated data to data fits

<table>
<thead>
<tr>
<th></th>
<th>(10^{-3})</th>
<th>(\rho)</th>
<th>(\delta)</th>
<th>(\xi)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation</td>
<td></td>
<td>0.10</td>
<td>0.08</td>
<td>0.13</td>
<td>5.8</td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
<td>0.07</td>
<td>0.05</td>
<td>0.28</td>
<td>3.9</td>
</tr>
<tr>
<td>Chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td></td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
<td>2.6</td>
</tr>
<tr>
<td>Cell Geometry</td>
<td></td>
<td>0.28</td>
<td>0.21</td>
<td>0.36</td>
<td>16.</td>
</tr>
<tr>
<td>Gas Density</td>
<td></td>
<td>0.15</td>
<td>0.11</td>
<td>0.20</td>
<td>8.5</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger time</td>
<td></td>
<td>0.13</td>
<td>0.09</td>
<td>0.16</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Long list at this level – **No showstopper found**

session J11
\(\rho\) – (Musser)
\(\delta\) – (Gaponenko)
Timeline

- 6x10^9 muon decay events are in hand
 - complete 10^{-3} analysis this summer!
 - publish determination of \(\rho \) and \(\delta \)
- 2004 data run
 - data on \(P_\mu \xi \) at 10^{-3} (and \(\eta \)?) this summer/fall
- at least 3 PhD’s granted by 2005
- Final parts in 10^{-4} data & publications: 2005/2006
- Need More Graduate Students Now
Summary

- The TWIST experiment is near end of phase 1
 - Anticipate preliminary measurements at \(\sim 0.1\% \) of:
 - \(\rho \) and \(\delta \) (this summer)
 - \(P_{\mu \xi} \) (Data during the summer/fall of 2004)
 - Final precision on \(\rho \) and \(\delta \) and \(P_{\mu \xi} \) at \(\sim \pm 0.02\% \)

- TWIST is exploring significant new space where evidence may be found to challenge the standard model

- For left/right symmetric models, TWIST has a mass reach which is comparable to - and which complements \(\beta \) decay experiments and direct searches at the Tevatron