First Results on Muon Decay from TWIST

The Precision Frontier in Particle Physics

Maher Quraan

TWIST Collaboration

TRIUMF/University of Alberta

June 6, 2005

Canadian Association of Physicists Congress

TWIST is testing the standard model predictions for the weak interaction by measuring the energy and angular distribution of e^+ from the decay of polarized μ^{+} .

The collaboration

TRIUMF

Ryan Bayes[†] Yuri Davydov **Jaap Doornbos** Wayne Faszer Makoto Fujiwara **David Gill Robert Henderson Jingliang Hu** John A. Macdonald § **Glen Marshall** Mina Nozar Konstantin Olchanski Dick Mischke^{††} **Art Olin Robert Openshaw** Tracy Porcelli^{*} Jean-Michel Poutissou **Renee Poutissou Grant Sheffer** Bill Shin ‡ ‡ June 9, 2005

Alberta

Andrei Gaponenko Peter Kitching Rob MacDonald Maher Quraan Nathan Rodning § John Schaapman Glen Stinson

British Columbia Blair Jamieson Mike Hasinoff

Montreal Pierre Depommier

Regina

Ted Mathie Roman Tacik

Maher Quraan

Kurchatov Institute

Vladimir Selivanov Vladimir Torokhov

Texas A&M

Carl Gagliardi Jim Musser Robert Tribble Maxim Vasiliev

Valparaiso

Don Koetke Paul Nord Shirvel Stanislaus

Graduate Students † also UVic ‡‡ also Saskatchewan ‡ also UNBC †† also LANL § Deceased

The collaboration

Muon decay matrix element

- In the SM only vector couplings of left handed to left handed fermions are allowed.
- To search for new physics start with a general interaction matrix
 - Local.
 - Derivative free.
 - Lorentz-invariant.
 - Lepton number conserving.

$$M = \frac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma=S,V,T\\\varepsilon,\mu=R,L}} g_{\varepsilon\mu}^{\gamma} \left\langle \overline{e}_{\varepsilon} \middle| \Gamma^{\gamma} \middle| (V_e)_n \right\rangle \left\langle (\overline{V}_{\mu})_m \middle| \Gamma_{\gamma} \middle| \overline{\mu}_{\mu} \right\rangle$$

Fetscher, Gerber and Johnson. Phys Rev B 173 (102), 1986.

- S, V, T = scalar, vector or tensor interactions
- R, L = right and left handed leptons

$$\Gamma^{S} = 1$$

$$\Gamma^{V} = \gamma^{\mu}$$

$$\Gamma^{T} = \frac{1}{\sqrt{2}} \sigma^{\mu\nu} \equiv \frac{i}{2\sqrt{2}} (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu})$$

June 9, 2005

The coupling constants

In the SM only vector couplings of left handed to left handed fermions are allowed.

$\left g \frac{S}{RR}\right = 0$	$\left g \frac{V}{RR}\right = 0$	$\left g \begin{array}{c} T \\ RR \end{array}\right \equiv 0$
$\left g \frac{S}{LR}\right = 0$	$\left g_{LR}^{V}\right = 0$	$\left g \begin{array}{c} T \\ LR \end{array}\right = 0$
$\left g \begin{array}{c} S \\ RL \end{array}\right = 0$	$\left g_{RL}^{V}\right = 0$	$\left g \begin{array}{c} T \\ RL \end{array}\right = 0$
$\left g \begin{array}{c} S \\ LL \end{array}\right = 0$	$\left g_{LL}^{V}\right = 1$	$\left g \begin{array}{c} T \\ LL \end{array}\right \equiv 0$

PDG limits on the coupling constants.

$\left g \frac{S}{RR}\right < 0.066$	$\left g\frac{V}{RR}\right < 0.033$	$\left g \begin{array}{c} T \\ RR \end{array}\right \equiv 0$
$\left g \frac{S}{LR}\right < 0.125$	$\left g \frac{V}{LR}\right < 0.060$	$\left g \frac{T}{LR}\right < 0.036$
$\left g \frac{S}{RL}\right < 0.424$	$\left g_{RL}^{V}\right < 0.110$	$\left g \begin{array}{c} T \\ RL \end{array}\right < 0.122$
$\left g \frac{S}{LL}\right < 0.55$	$\left g_{LL}^{V}\right > 0.96$	$\left g \begin{array}{c} T \\ LL \end{array}\right \equiv 0$

Differential decay rate

anisotropic

- Calculate the muon decay rate differential in energy and angle
 - Start with the general form.

 $\frac{1}{2} m_{\mu}$

Parametrize using the Michel parameters.

$$\frac{d^{2}\Gamma}{dxd\cos\vartheta} = \frac{m_{\mu}}{4\pi^{3}} W_{e\mu}^{4} G_{F}^{2} \sqrt{x^{2} - x_{0}^{2}} \left\{ F_{IS}(x) + P_{\mu} \cos\vartheta F_{AS}(x) \right\}$$

isotropic

$$F_{IS}(x) = x(1-x) + \frac{2}{9}\rho (4x^2 - 3x - x_o^2) + \eta x_o(1-x) + F_{IS}^{RC}(x)$$

$$F_{AS}(x) = \frac{1}{3} \xi \sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3} \delta \left(4x - 3 + \left(\sqrt{1 - x_0^2} - t \right) \right) \right] + F_{AS}^{RC}(x)$$

$$W_{e\mu} = \frac{\left(m_{\mu}^2 + m_e^2 \right)}{2 m_{\mu}} \qquad x = E_e / W_{e\mu}$$

$$x_o = m_e / W_{e\mu}$$

$$x_o = m_e / W_{e\mu}$$

Radiative corrections

June 9, 2005

$$\rho = \frac{3}{4} - \frac{3}{4} \left[\left| g_{LR}^{V} \right|^{2} + \left| g_{RL}^{V} \right|^{2} + 2 \left| g_{LR}^{T} \right|^{2} + 2 \left| g_{RL}^{T} \right|^{2} + \operatorname{Re} \left(g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*} \right) \right]$$

$$\begin{aligned} \xi \delta &= \frac{3}{4} - \frac{3}{4} \left[\left| g_{LR}^{V} \right|^{2} + \left| g_{RL}^{V} \right|^{2} + 4 \left| g_{LR}^{T} \right|^{2} + 2 \left| g_{RL}^{T} \right|^{2} + 2 \left| g_{RR}^{V} \right|^{2} \\ &+ \frac{1}{2} \left| g_{RR}^{S} \right|^{2} + \frac{1}{2} \left| g_{LR}^{S} \right|^{2} + \operatorname{Re} \left(g_{RL}^{S} g_{RL}^{T*} - g_{LR}^{S} g_{LR}^{T*} \right) \right] \end{aligned}$$

$$\xi = 1 - \left[\frac{1}{2} \left|g_{RR}^{S}\right|^{2} + \frac{1}{2} \left|g_{LR}^{S}\right|^{2} + 2 \left|g_{RR}^{V}\right|^{2} + 4 \left|g_{RL}^{V}\right|^{2} - 2 \left|g_{LR}^{V}\right|^{2} - 2 \left|g_{LR}^{V}\right|^{2}$$

$$\eta = \frac{1}{2} \operatorname{Re} \left[g_{LL}^{V} g_{RR}^{S*} + g_{RL}^{V} \left(g_{LR}^{S*} + 6 g_{LR}^{T*} \right) + g_{LR}^{V} \left(g_{RL}^{S*} + 6 g_{RL}^{T*} \right) + g_{RR}^{V} g_{LL}^{S*} \right]$$

Model-independent physics

Define decay probabilities according to handedness

rate ~
$$\sum_{m,n=L,R} Q_{mn}$$

Fetscher, Gerber and Johnson, Phys Rev Lett B 173 (102), 1986.

$$Q_{RR} = \frac{1}{4} |g_{RR}^{S}|^{2} + |g_{RR}^{V}|^{2}$$

$$Q_{LR} = \frac{1}{4} |g_{LR}^{S}|^{2} + |g_{LR}^{V}|^{2} + 3|g_{LR}^{T}|^{2}$$

$$Q_{RL} = \frac{1}{4} |g_{RL}^{S}|^{2} + |g_{RL}^{V}|^{2} + 3|g_{RL}^{T}|^{2}$$

$$Q_{LL} = \frac{1}{4} |g_{LL}^{S}|^{2} + |g_{LL}^{V}|^{2}$$

Decay of a *right-handed* μ into a *right-handed* or *left-handed* e^+

Can be written in terms of δ and ξ

$$Q_{R}^{\mu} = Q_{RR} + Q_{LR} = \frac{1}{2} \left(1 + \frac{1}{3}\xi - \frac{16}{9}\xi\delta \right)$$

$$= 0$$
by the standard model

A determination of δ and ξ gives a *model-independent test* for the existence of *right-handed couplings to muons*, i.e. $Q_R^{\mu \neq 0}$

June 9, 2005

Left-right symmetric models

10

- $W_L \& W_R$ mix to form the mass eigenstates $W_1 \& W_2$
 - Mixing angle ζ is small.

 $M_2 > M_1$ since left handed couplings are dominant at low energies.

$$W_1 = W_L \cos \zeta - W_R \sin \zeta$$
$$W_2 = W_L \sin \zeta + W_R \cos \zeta$$

$$W_1 \approx W_L \& W_2 \approx W_R$$

• The mass and mixing angles are sensitive to ho and ξ

June 9, 2005

8

II. The Experiment

The beamline

- Surface μ⁺ beam
 - Mono-energetic (P=29.7 MeV/c).
 - Highly polarized.

The detector

- μ^+ beam stops at the centre.
- Detector is highly symmetric.
- Chambers sit inside a highly uniform MRI magnet.
- Drift chambers used to track decay e⁺.
- Trigger provided by a thin upstream scintillator.
- Beam stopping position fine-tuned using a variable CO₂:He gas degrader.
- The 2 tesla field is uniform to 4×10^{-3} , mapped to precision of 5×10^{-5} .

June 9, 2005

The detector

June 9, 2005

Chamber performance

- High precision
 - Longitudinal plane positions accurate to **5x10**⁻⁵ by engineering.
 - Measured wire positions yield $\sigma=3.3\mu m$
 - Transverse positions calculated to an accuracy of 5 μ m using 120 MeV/c pions.

High resolution

- High alignment precision.
- Choice of gas
 - **DME:** slow gas, high ionization density, low Lorentz angle.

High efficiency.

- No hot or dead wires throughout 2002 data taking!
- Efficiency >99.9% at 1900V.

12

III. The analysis

Track reconstruction

Pattern recognition

- Group hits in time using PC timing info.
- Classify tracks according to hit patterns.
- Must recognize beam positron tracks, delta tracks, backscattering, etc.

Track fitting

- Perform a crude fit using wire centres,
- Refine fit using drift time and take into account MS field non-uniformities,

June 9, 2005

Spectrum reconstruction

The TWIST Monte Carlo

- TWIST relies on GEANT3 to simulate detector acceptance
 - Data spectrum fitted to MC spectrum.
- Monte Carlo includes elaborate details
 - GEANT3 geometry contains virtually all detector components.
 - Simulate detector response in detail (ionization clusters).
 - Realistic, measured beam profile and divergence.
 - Extra muon and beam positron contamination included.
 - Output into digitized format, identical to real data.
- Monte Carlo verified using real data
 - See contributed talk by Robert MacDonald on Wednesday, 12:00pm (CEME 1202).

"Evaluation and simulation of the response function in the TWIST experiment"

Energy calibrations

For a planar detector energy loss is linear in $1/\cos(\theta)$.

$$p_{edge}(\vartheta) = \left(1 + \frac{\beta}{p_o}\right) \left(p_o - \frac{\alpha}{|\cos(\vartheta)|}\right)$$

 $P_0 = 52.828$ MeV/c α, β are fitting parameters

- α corrects for energy loss.
- β corrects for a possible magnetic field shift.
 - **\beta=0** if field is known accurately.

Extracting the Michel parameters

- The decay spectrum is linear in ρ , η , ξ , $\xi\delta$.
 - First order expansion is exact.

$$n_{i}(\lambda_{data}) = n_{i}(\lambda_{mc}) + \frac{\partial n_{i}}{\partial \lambda} \Delta \lambda$$

where
$$\lambda = [\rho, n, \xi, \xi \delta]$$

 $\Delta\lambda$ are the fitting parameters

- Use standard model values (λ_{mc}) to generate the MC spectrum.
 - $\lambda_{mc} = \lambda_{SM}$.
 - $\Delta\lambda$ are the deviations from the SM.

The blind analysis

- Use hidden values (λ_{mc}) to generate the MC spectrum
 - $\Delta\lambda$ are the deviations from hidden values.
- Complete data analysis and fit before opening the box.
- Complete systematic evaluations before opening the box.

Fit quality and fiducial region

cos(0) High fit quality. 0.8 3 0.6 Normalized residuals ~1. 2 0.4 0.2 Conservative fiducial region. -0 0 -0.2 -1 **p** < 50 MeV/c. -0.4 -2 $0.50 < |\cos \theta| < 0.84.$ -0.6 -3 -0.8 $|\mathbf{p}_z| > 13.7 \text{ MeV/c.}$ 1 'n 10 20 30 40 50 **p**_T < 38.5 MeV/c. momentum, MeV/c 2000 ×10² 39.5 $0.70 < |\cos \theta| < 0.84$ (a) 15000E 10000 1500 Yield (events) 0 12000 12000 2000 Yield (Events) All events In fiducial 1000 29.5 < p < 30.0 MeV/c 500 5000 0 Momentum, MeV/c

 $cos(\theta)$

17

IV. The systematics

Evaluating the systematics

Fit data to data and MC to MC to evaluate systematic effects

$$n_{i}(\lambda_{mc}) = n_{i}(\lambda'_{mc}) + \frac{\partial n_{i}}{\partial \lambda} \Delta \lambda$$
$$n_{i}(\lambda_{data}) = n_{i}(\lambda'_{data}) + \frac{\partial n_{i}}{\partial \lambda} \Delta \lambda$$

Data sets acquired for systematic evaluations
B = 1.96 tesla
B = 2.04 tesla
DC HV lowered
PC HV lowered
Muon stopped slightly upstream
Muon stopped slightly downstream
Al slab inserted downstream
Plastic slab inserted downstream
Beam flux rate doubled
Beam flux rate cut in half
Bending magnet field increased by 10G
Bending magnet field decreased by 10G
Channel momentum tuned for non-surface (cloud) muons

Summary of the systematics

Systematic effect	Uncertainty (x10 ⁻³)
Chamber response (ave)	0.51
Stopping target thickness	0.49
Positron interactions	0.46
Spectrometer alignment	0.22
Momentum calibration (ave)	0.20
Theoretical radiative corrections	0.20
Track selection algorithm	0.11
Muon beam stability (ave)	0.04

Systematic effect	Uncertainty (x10 ⁻³)
Spectrometer alignment	0.61
Chamber response (ave)	0.56
Positron interactions	0.55
Stopping target thickness	0.37
Momentum calibration (ave)	0.29
Muon beam stability	0.10
Theoretical radiative corrections	0.10
Up & down efficiencies	0.04

Thanks to WestGrid!

20

TWIST results for ρ and δ

- TWIST results for ρ
 - A factor of 2.5 improvement over PDG value.

 $\rho = 0.75080 \pm 0.00032(stat) \pm 0.00097(syst) \pm 0.00023(\eta)$

Musser et. al. Phys. Rev. Lett. 94, 101805 (2005)

TWIST results for δ

• A factor of 2.9 improvement over PDG value.

 $\delta = 0.74964 \pm 0.00066(stat) \pm 0.00112(syst)$

Gaponenko et. al., Phys. Rev. D 71, 071101(R) (2005)

Results in agreement with the Standard Model

Right-handed currents

Right handed currents

$$Q_{R}^{\mu} \leq \frac{1}{2} \left(1 - P_{\mu} \xi \left(\frac{16}{9} \delta - \frac{1}{3} \right) \right)$$

= $\frac{1}{2} \left[1 - P_{\mu} (\xi \delta / \rho) \rho \left(\frac{16}{9} - \frac{1}{3\delta} \right) \right]$
= Use:
• TWIST ρ, δ .
• $P_{\mu} (\xi \delta / \rho) > 0.99787$.
$$|g_{LR}^{\nu}| < 0.036|$$
$$|g_{LR}^{\nu}| < 0.025|$$

Model-independent result

TWIST results for ξ

"Status of the TWIST Measurement of the muon decay asymmetry"

June 9, 2005

Limits on left-right symmetric models

Limits are from high precision muon decay experiments, nuclear β decay, and high energy experiments

- Different types of experiments are complementary.
- β decay experiments subject to theoretical uncertainties.
- High energy experiments place limits only on W_R mass.
- Muon decay offers a clean system with limits on mass and mixing angle.

Monday, 7:00pm poster & beer session: Ryan Bayes "A Search for Rare Decays in the TWIST Muon Decay Spectrum"

- TWIST has been able to improve substantially on the measurement of the Michel parameters ρ and δ .
 - First successful improvement on **p** in over 30 years.
 - First successful improvement on δ in over 20 years.
- Several factors allowed this improvement to happen.
 - A highly polarized high flux stable beam from TRIUMF.
 - A high precision, high efficiency, low mass detector.
 - A planar detector geometry allowing precise energy calibrations.
 - The availability of *WestGrid* allowing evaluation of the systematics.
- All results are in agreement with the standard model predictions.
 - The values of ρ and δ agree with the Standard Model values.
 - No evidence for right handed currents.
 - Improved limits on mass and mixing angle of W_R compared to muon decay experiments.
- The TWIST results are particularly important due to the use of blind analysis.

June 9, 2005