A High Precision Measurement of Muon Decay Parameters

The Precision Frontier in Particle Physics

Maher Quraan

TWIST Collaboration

TRIUMF/University of Alberta

June 14, 2004

Canadian Association of Physicists

TWIST will test the standard model predictions for the weak interaction by measuring the energy and angular distribution of e^+ from the decay of polarized μ^{+} .

The TWIST collaboration

TRIUMF

Ryan Bayes[†] Yuri Davydov **Jaap Doornbos Wayne Faszer** Makoto Fujiwara **David Gill Robert Henderson Jingliang Hu** John A. Macdonald § **Glen Marshall** Dick Mischke^{††} **Art Olin Robert Openshaw** Tracy Porcelli^{*} Jean-Michel Poutissou **Renee Poutissou Grant Sheffer** Bill Shin ‡ ‡

Alberta

Andrei Gaponenko Peter Kitching Rob MacDonald Maher Quraan *Nathan Rodning §* John Schaapman Glen Stinson

British Columbia Blair Jamieson Mike Hasinoff

Montreal

Pierre Depommier

Regina

Ted Mathie Roman Tacik

Graduate Students June 10, 2004 † also UVic

Kurchatov Institute

Vladimir Selivanov Vladimir Torokhov

Texas A&M

Carl Gagliardi Jim Musser Robert Tribble Maxim Vasiliev

Valparaiso

Don Koetke Paul Nord Shirvel Stanislaus

§ Deceased

† † also LANL

Muon decay rate

$$rate \sim \left| \sum_{\substack{\gamma = S, V, T \\ i, j = R, L}} g_{ij}^{\gamma} \left\langle \overline{\psi}_{e_i} \left| \Gamma^{\gamma} \right| \psi_{v_e} \right\rangle \left\langle \overline{\psi}_{v_{\mu}} \left| \Gamma_{\gamma} \right| \psi_{\mu_j} \right\rangle \right|^2$$

$$\Gamma^{S} = 1$$

$$\Gamma^{V} = \gamma^{\mu}$$

$$\Gamma^{T} = \frac{1}{\sqrt{2}} \sigma^{\mu\nu}$$

$$\equiv \frac{i}{2\sqrt{2}} (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu})$$

- S, V, T = scalar, vector or tensor interactions
- R, L = right and left handed leptons

• In the standard model only vector couplings of left-handed to left-handed fermions are allowed:

$$\begin{vmatrix} g_{RR}^{S} \\ g_{RR}^{R} \end{vmatrix} = 0 \qquad \begin{vmatrix} g_{RR}^{V} \\ g_{RR}^{R} \end{vmatrix} = 0 \qquad \begin{vmatrix} g_{RR}^{T} \\ g_{RR}^{T} \end{vmatrix} \equiv 0 \\ \begin{vmatrix} g_{LR}^{S} \\ g_{LR}^{T} \end{vmatrix} = 0 \qquad \begin{vmatrix} g_{LR}^{V} \\ g_{RL}^{V} \end{vmatrix} = 0 \qquad \begin{vmatrix} g_{LR}^{T} \\ g_{RL}^{T} \end{vmatrix} = 0 \\ \begin{vmatrix} g_{RL}^{S} \\ g_{LL}^{T} \end{vmatrix} = 0 \qquad \begin{vmatrix} g_{RL}^{V} \\ g_{LL}^{V} \end{vmatrix} = 1 \qquad \begin{vmatrix} g_{LL}^{T} \\ g_{LL}^{T} \end{vmatrix} = 0$$

June 10, 2004

Maher Quraan

Current limits on the coupling constants

Deviations from V-A structure are possible. Need more sensitive searches! TWIST will improve the coupling constants precision by a factor of 3 - 10

Maher Quraan

The muon decay parameters & the coupling constants

$$\rho = \frac{3}{4} - \frac{3}{4} \left[\left| g_{LR}^{V} \right|^{2} + \left| g_{RL}^{V} \right|^{2} + 2 \left| g_{LR}^{T} \right|^{2} + 2 \left| g_{RL}^{T} \right|^{2} + \operatorname{Re} \left(g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*} \right) \right]$$

$$\xi \delta = \frac{3}{4} - \frac{3}{4} \left[\left| g_{LR}^{V} \right|^{2} + \left| g_{RL}^{V} \right|^{2} + 4 \left| g_{LR}^{T} \right|^{2} + 2 \left| g_{RL}^{T} \right|^{2} + 2 \left| g_{RR}^{V} \right|^{2} + \frac{1}{2} \left| g_{RR}^{S} \right|^{2} + \frac{1}{2} \left| g_{LR}^{S} \right|^{2} + \operatorname{Re} \left(g_{RL}^{S} g_{RL}^{T*} - g_{LR}^{S} g_{LR}^{T*} \right) \right]$$

$$\xi = 1 - \left[\frac{1}{2} \left|g_{RR}^{S}\right|^{2} + \frac{1}{2} \left|g_{LR}^{S}\right|^{2} + 2 \left|g_{RR}^{V}\right|^{2} + 4 \left|g_{RL}^{V}\right|^{2} - 2 \left|g_{LR}^{V}\right|^{2} - 2 \left|g_{LR}^{V}\right|^{2}$$

$$\eta = \frac{1}{2} \operatorname{Re} \left[g_{LL}^{V} g_{RR}^{S^*} + g_{RL}^{V} \left(g_{LR}^{S^*} + 6 g_{LR}^{T^*} \right) + g_{LR}^{V} \left(g_{RL}^{S^*} + 6 g_{RL}^{T^*} \right) + g_{RR}^{V} g_{LL}^{S^*} \right]$$

June 10, 2004

Maher Quraan

 $\rho = \frac{3}{4}$ $\delta = \frac{3}{4}$ $\xi = 1$ $\eta = 0$

5

Coupling to right-handed muons...

rate ~
$$\sum_{m,n=L,R} Q_{mn}$$

$$Q_{mR} = Q_{RR} + Q_{LR} = \frac{1}{4} |g_{RR}^{S}|^{2} + |g_{RR}^{V}|^{2} + \frac{1}{4} |g_{LR}^{S}|^{2} + |g_{LR}^{V}|^{2} + 3|g_{LR}^{T}|^{2}$$

$$\equiv 0 \quad by \ the \ standard \ model$$

 Q_{mR} describes decay of a *right-handed* μ into a *right-handed* or *left-handed* e^+

 Q_{mR} can be written in terms of δ and ξ

$$Q_{mR} = \frac{1}{2} \left(1 + \frac{1}{3}\xi - \frac{16}{9}\xi\delta \right)$$

A determination of δ and ξ gives a *model-independent test* for the existence of *right-handed couplings to muons*, i.e., $Q_{mR} \neq 0$

Anticipated TWIST sensitivity to right-handed currents

Beyond the standard model

• In the SM there are two (weak) charged-current vector bosons

 $W^{\pm}(W_L^{\pm})$

• In some extensions to the SM one has left-handed as well as right-handed vector bosons

$$W_L^{\pm}$$
 & W_R^{\pm}

• $W_L \& W_R$ mix to form the mass eigenstates $W_1 \& W_2$

 $W_1 = W_L \cos \xi - W_R \sin \xi$ $W_2 = W_L \sin \xi + W_R \cos \xi$

- Mixing angle ξ is small
- $W_2 > W_1$ since left handed couplings are dominant at low energies.

 $W_1 \approx W_L \quad \& \quad W_2 \approx W_R$

Maher Quraan

Anticipated TWIST sensitivity to left-right mixing

The beamline

• The TRIUMF beamline delivers highly polarized "surface muons".

The spectrometer

• The TWIST detector is a set of high precision, low mass chambers sitting in a superconducting magnet.

Glass

The spectrometer

Maher Quraan

A typical decay event

TWIST statistics and systematics

- *TWIST* can accumulate $\sim 10^9$ muon decay events in *two weeks*.
- *TWIST* is *systematics* limited.
- In 2002-03, $\sim 6 \times 10^9$ muon decay events on tape.
- Need a lot of computer power (thanks to WestGrid –1008 CPUs)!
- Long list of systematic effects to investigate!

Systematic	Sample systematic studies (data & MC)	PC
Chamber response	Change high voltage from standard.	Μ
Chamber alignment &	Randomize plane positions in MC.	M
Beam tune	Change beam tune from standard (data & MC).	Pl
Solenoidal field effects	Change magnetic field from standard (data & MC).	Be
GEANT physics and stepping	MANY GEANT validation studies!	Be
Polarization	Use non-surface (cloud) muons.	R R
Muon stopping distribution	Stop muons off centre (data & MC).	10 10 Su
Code biases	MANY code validation studies!	

Data sets acquired		
Standard data sets		
B = 1.96 tesla		
B = 2.04 tesla		
DC HV lowered		
PC HV lowered		
Muon stopped slightly upstream		
Muon stopped slightly downstream		
Al slab inserted downstream		
Plastic slab inserted downstream		
Beam flux rate doubled		
Beam flux rate cut in half		
Bending magnet field increased by 10G		
Bending magnet field decreased by 10G		
Channel momentum tuned for non- surface (cloud) muons		

Evaluating systematic errors: data to data

Evaluating systematic errors: MC to MC

Final result

TWIST timeline

• 2004 program:

- Publish measurement of ρ , δ at 10⁻³ in 2004.
 - Data in hand for measurement of ρ , δ to 10^{-3}
 - Study of systematic errors for 10⁻³ nearly complete
- Take data for measurement of $P_{\mu}\xi$ for 10⁻³ precision (publish 2004/05).

• 2005/06 program:

• Take data for measurement of ρ , η , ξ , δ to a precision of a *few parts in* 10⁴ (~10³ for η)