A Search for Rare Decays in the TWISTMuon Decay Spectrum

Ryan Bayes

University of Victoria

for the TWIST Collaboration

Presentation for APS Northwest section meeting

Saturday, May 14, 2005

Outline

• TWIST

- Motivation for the Exotic Decay Search
- Methodology
- Results and Conclusions

The TWIST experiment

\mathcal{T} riumf \mathcal{W} eak \mathcal{I} nteraction \mathcal{S} ymmetry \mathcal{T} est

A collaboration of 40 members in Canada, Russia, and the United States.

• Tests the weak nuclear interaction through the process.

$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$

by measuring the momentum and angle of e^+

- *TWIST* has produced a detailed measurement of the muon decay spectrum.
- Goal of TWIST is to measure the Michel parameters describing the decay spectrum to an unprecedented accuracy

Motivation

- Large statistical sample of muon decay events allows for a more comprehensive search for rare (or forbidden) muon decays than any previous search.
- No strong argument currently exists for the forbidding lepton flavor violating processes.

Search for Two Body Decays

Target decay is

$$\mu^+ \to e^+ X^0$$

where X^0 is an unknown boson mediating lepton flavor violation

- Assume the decay is isotropic.
- Assume the decay products are long lived.
 If τ >> 2.8×10⁻²¹s the instrument response dominates the peak width.

Branching ratio of shown peak: 8.37×10^{-6}

We want a <u>confidence interval</u> for the branching ratio of all <u>accessible</u> particle masses.

Previous 90% upper limit on this process is 3×10^{-4} (Bryman 1986)

Methodology for Our Search

- Divide momentum range into 70 subranges on the order of the momentum resolution.
- Fit the Michel spectrum plus a peak constrained to be within the each subrange.
- Define a confidence interval for the branching ratio corresponding to the peak.

Fitting Function

 $f(p,\cos\theta) = N_{\mu}(F(p,\cos\theta;\rho,\eta,\xi,\delta) + \Gamma_{X^0}H(p;\bar{p},\sigma(\bar{p},\cos\theta))\kappa(p,\cos\theta))$

 $F(p, \cos \theta; \rho, \eta, \xi, \delta)$ is the normal muon decay spectrum (Michel spectrum).

 $H(p; \bar{p}, \sigma(\bar{p}, \cos \theta))$ represents the instrument response function $\kappa(p, \cos \theta)$ represents the acceptance of the detector Note that the parameters varied during the fit are

- The Michel Parameters; ρ , η , ξ , δ and the normalization N_{μ} .
- The mean peak momentum; \bar{p}
- The branching ratio for the unknown particle; Γ_{X^0}

This fitting method has been validated using Monte Carlo simulations.

Defining the Resolution

Momentum resolution of the detector measured using Monte Carlo

- Directly compare thrown track momentum to the reconstructed momentum
- Resolution dependent on the momentum and the angle of the positron

Confidence Intervals

Definition: The interval that has a given probability of containing the real value of an experimentally determined parameter

- Classical Neyman (frequentist) intervals do not necessarily cover the required intervals correctly; can lead to non-physical answers in the case of small signals
- Feldman Cousins method: Requires no *a priori* assumption on whether we are defining a interval or an upper limit. By construction requires the interval to be physically bounded.
 Calculation of the confidence interval separated from the fitting procedure.

Conclusions

- We can set a 99% upper limit for the branching ratio of a isotropic two body muon decay at a part in 10⁵ for the available mass regime.
- No new statistically significant particles have been found so far.
- We can further restrict the branching ratio by using the full amount of data available from \mathcal{TWIST} This should increase our sensitivity by a factor of $\sqrt{5}$

Acknowledgments

- This work funded by NSERC
- Data was analyzed in participation with Westgrid
- Special thanks go to Art Olin and Makoto Fujiwara